sayakpaul's picture
sayakpaul HF staff
add: initial files.
3579efb
raw
history blame
1.91 kB
"""
Thanks to Freddy Boulton (https://github.com/freddyaboulton) for helping with this.
"""
import pickle
import gradio as gr
from datasets import load_dataset
from transformers import AutoModel
from similarity_utils import BuildLSHTable
seed = 42
# Only runs once when the script is first run.
with open("lsh.pickle", "rb") as handle:
loaded_lsh = pickle.load(handle)
# Load model for computing embeddings.
model_ckpt = "nateraw/vit-base-beans"
model = AutoModel.from_pretrained(model_ckpt)
lsh_builder = BuildLSHTable(model)
lsh_builder.lsh = loaded_lsh
# Candidate images.
dataset = load_dataset("beans")
candidate_dataset = dataset["train"].shuffle(seed=seed)
def query(image, top_k):
results = lsh_builder.query(image)
# Should be a list of string file paths for gr.Gallery to work
images = []
# List of labels for each image in the gallery
labels = []
candidates = []
overlaps = []
for idx, r in enumerate(sorted(results, key=results.get, reverse=True)):
if idx == top_k:
break
image_id, label = r.split("_")[0], r.split("_")[1]
candidates.append(candidate_dataset[int(image_id)]["image"])
labels.append(label)
overlaps.append(results[r])
candidates.insert(0, image)
labels.insert(0, label)
for i, candidate in enumerate(candidates):
filename = f"{i}.png"
candidate.save(filename)
images.append(filename)
# The gallery component can be a list of tuples, where the first element is a path to a file
# and the second element is an optional caption for that image
return list(zip(images, labels))
# You can set the type of gr.Image to be PIL, numpy or str (filepath)
# Not sure what the best for this demo is.
gr.Interface(
query,
inputs=[gr.Image(), gr.Slider(value=5, minimum=1, maximum=10, step=1)],
outputs=gr.Gallery(),
).launch()