import os import shutil import sys from typing import Any, Dict, List, Optional import torch import yaml from dotenv import load_dotenv from langchain.chains.base import Chain from langchain.docstore.document import Document from langchain.prompts import BasePromptTemplate, load_prompt from langchain_core.callbacks import CallbackManagerForChainRun from langchain_core.language_models import BaseLanguageModel from langchain_core.output_parsers import StrOutputParser from langchain_core.retrievers import BaseRetriever from transformers import AutoModelForSequenceClassification, AutoTokenizer current_dir = os.path.dirname(os.path.abspath(__file__)) # src/ directory kit_dir = os.path.abspath(os.path.join(current_dir, '..')) # EKR/ directory repo_dir = os.path.abspath(os.path.join(kit_dir, '..')) sys.path.append(kit_dir) sys.path.append(repo_dir) #import streamlit as st from utils.model_wrappers.api_gateway import APIGateway from utils.vectordb.vector_db import VectorDb from utils.visual.env_utils import get_wandb_key CONFIG_PATH = os.path.join(kit_dir, 'config.yaml') PERSIST_DIRECTORY = os.path.join(kit_dir, 'data/my-vector-db') #load_dotenv(os.path.join(kit_dir, '.env')) from utils.parsing.sambaparse import parse_doc_universal # Handle the WANDB_API_KEY resolution before importing weave #wandb_api_key = get_wandb_key() # If WANDB_API_KEY is set, proceed with weave initialization #if wandb_api_key: # import weave # Initialize Weave with your project name # weave.init('sambanova_ekr') #else: # print('WANDB_API_KEY is not set. Weave initialization skipped.') class RetrievalQAChain(Chain): """class for question-answering.""" retriever: BaseRetriever rerank: bool = True llm: BaseLanguageModel qa_prompt: BasePromptTemplate final_k_retrieved_documents: int = 3 @property def input_keys(self) -> List[str]: """Input keys. :meta private: """ return ['question'] @property def output_keys(self) -> List[str]: """Output keys. :meta private: """ return ['answer', 'source_documents'] def _format_docs(self, docs): return '\n\n'.join(doc.page_content for doc in docs) def rerank_docs(self, query, docs, final_k): # Lazy hardcoding for now tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large') reranker = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large') pairs = [] for d in docs: pairs.append([query, d.page_content]) with torch.no_grad(): inputs = tokenizer( pairs, padding=True, truncation=True, return_tensors='pt', max_length=512, ) scores = ( reranker(**inputs, return_dict=True) .logits.view( -1, ) .float() ) scores_list = scores.tolist() scores_sorted_idx = sorted(range(len(scores_list)), key=lambda k: scores_list[k], reverse=True) docs_sorted = [docs[k] for k in scores_sorted_idx] # docs_sorted = [docs[k] for k in scores_sorted_idx if scores_list[k]>0] docs_sorted = docs_sorted[:final_k] return docs_sorted def _call( self, inputs: Dict[str, Any], run_manager: Optional[CallbackManagerForChainRun] = None, ) -> Dict[str, Any]: qa_chain = self.qa_prompt | self.llm | StrOutputParser() response = {} documents = self.retriever.invoke(inputs['question']) if self.rerank: documents = self.rerank_docs(inputs['question'], documents, self.final_k_retrieved_documents) docs = self._format_docs(documents) response['answer'] = qa_chain.invoke({'question': inputs['question'], 'context': docs}) response['source_documents'] = documents return response class DocumentRetrieval: def __init__(self): self.vectordb = VectorDb() config_info = self.get_config_info() self.api_info = config_info[0] self.llm_info = config_info[1] self.embedding_model_info = config_info[2] self.retrieval_info = config_info[3] self.prompts = config_info[4] self.prod_mode = config_info[5] self.retriever = None self.llm = self.set_llm() def get_config_info(self): """ Loads json config file """ # Read config file with open(CONFIG_PATH, 'r') as yaml_file: config = yaml.safe_load(yaml_file) api_info = config['api'] llm_info = config['llm'] embedding_model_info = config['embedding_model'] retrieval_info = config['retrieval'] prompts = config['prompts'] prod_mode = config['prod_mode'] return api_info, llm_info, embedding_model_info, retrieval_info, prompts, prod_mode def set_llm(self): #if self.prod_mode: # sambanova_api_key = st.session_state.SAMBANOVA_API_KEY #else: # if 'SAMBANOVA_API_KEY' in st.session_state: # sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY') or st.session_state.SAMBANOVA_API_KEY # else: # sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY') sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY') llm = APIGateway.load_llm( type=self.api_info, streaming=True, coe=self.llm_info['coe'], do_sample=self.llm_info['do_sample'], max_tokens_to_generate=self.llm_info['max_tokens_to_generate'], temperature=self.llm_info['temperature'], select_expert=self.llm_info['select_expert'], process_prompt=False, sambanova_api_key=sambanova_api_key, ) return llm def parse_doc(self, docs: List, additional_metadata: Optional[Dict] = None) -> List[Document]: """ Parse the uploaded documents and return a list of LangChain documents. Args: docs (List[UploadFile]): A list of uploaded files. additional_metadata (Optional[Dict], optional): Additional metadata to include in the processed documents. Defaults to an empty dictionary. Returns: List[Document]: A list of LangChain documents. """ if additional_metadata is None: additional_metadata = {} # Create the data/tmp folder if it doesn't exist temp_folder = os.path.join(kit_dir, 'data/tmp') if not os.path.exists(temp_folder): os.makedirs(temp_folder) else: # If there are already files there, delete them for filename in os.listdir(temp_folder): file_path = os.path.join(temp_folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) elif os.path.isdir(file_path): shutil.rmtree(file_path) except Exception as e: print(f'Failed to delete {file_path}. Reason: {e}') # Save all selected files to the tmp dir with their file names #for doc in docs: # temp_file = os.path.join(temp_folder, doc.name) # with open(temp_file, 'wb') as f: # f.write(doc.getvalue()) for doc_info in docs: file_name, file_obj = doc_info temp_file = os.path.join(temp_folder, file_name) with open(temp_file, 'wb') as f: f.write(file_obj.read()) # Pass in the temp folder for processing into the parse_doc_universal function _, _, langchain_docs = parse_doc_universal(doc=temp_folder, additional_metadata=additional_metadata) return langchain_docs def load_embedding_model(self): embeddings = APIGateway.load_embedding_model( type=self.embedding_model_info['type'], batch_size=self.embedding_model_info['batch_size'], coe=self.embedding_model_info['coe'], select_expert=self.embedding_model_info['select_expert'], ) return embeddings def create_vector_store(self, text_chunks, embeddings, output_db=None, collection_name=None): print(f'Collection name is {collection_name}') vectorstore = self.vectordb.create_vector_store( text_chunks, embeddings, output_db=output_db, collection_name=collection_name, db_type='chroma' ) return vectorstore def load_vdb(self, db_path, embeddings, collection_name=None): print(f'Loading collection name is {collection_name}') vectorstore = self.vectordb.load_vdb(db_path, embeddings, db_type='chroma', collection_name=collection_name) return vectorstore def init_retriever(self, vectorstore): if self.retrieval_info['rerank']: self.retriever = vectorstore.as_retriever( search_type='similarity_score_threshold', search_kwargs={ 'score_threshold': self.retrieval_info['score_threshold'], 'k': self.retrieval_info['k_retrieved_documents'], }, ) else: self.retriever = vectorstore.as_retriever( search_type='similarity_score_threshold', search_kwargs={ 'score_threshold': self.retrieval_info['score_threshold'], 'k': self.retrieval_info['final_k_retrieved_documents'], }, ) def get_qa_retrieval_chain(self): """ Generate a qa_retrieval chain using a language model. This function uses a language model, specifically a SambaNova LLM, to generate a qa_retrieval chain based on the input vector store of text chunks. Parameters: vectorstore (Chroma): A Vector Store containing embeddings of text chunks used as context for generating the conversation chain. Returns: RetrievalQA: A chain ready for QA without memory """ # customprompt = load_prompt(os.path.join(kit_dir, self.prompts["qa_prompt"])) # qa_chain = customprompt | self.llm | StrOutputParser() # response = {} # documents = self.retriever.invoke(question) # if self.retrieval_info["rerank"]: # documents = self.rerank_docs(question, documents, self.retrieval_info["final_k_retrieved_documents"]) # docs = self._format_docs(documents) # response["answer"] = qa_chain.invoke({"question": question, "context": docs}) # response["source_documents"] = documents retrievalQAChain = RetrievalQAChain( retriever=self.retriever, llm=self.llm, qa_prompt=load_prompt(os.path.join(kit_dir, self.prompts['qa_prompt'])), rerank=self.retrieval_info['rerank'], final_k_retrieved_documents=self.retrieval_info['final_k_retrieved_documents'], ) return retrievalQAChain def get_conversational_qa_retrieval_chain(self): """ Generate a conversational retrieval qa chain using a language model. This function uses a language model, specifically a SambaNova LLM, to generate a conversational_qa_retrieval chain based on the chat history and the relevant retrieved content from the input vector store of text chunks. Parameters: vectorstore (Chroma): A Vector Store containing embeddings of text chunks used as context for generating the conversation chain. Returns: RetrievalQA: A chain ready for QA with memory """