enterprise_knowledge_retriever / src /document_retrieval.py
petrojm's picture
add EKR files
a6c26b1
raw
history blame
11.8 kB
import os
import shutil
import sys
from typing import Any, Dict, List, Optional
import torch
import yaml
from dotenv import load_dotenv
from langchain.chains.base import Chain
from langchain.docstore.document import Document
from langchain.prompts import BasePromptTemplate, load_prompt
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.output_parsers import StrOutputParser
from langchain_core.retrievers import BaseRetriever
from transformers import AutoModelForSequenceClassification, AutoTokenizer
current_dir = os.path.dirname(os.path.abspath(__file__)) # src/ directory
kit_dir = os.path.abspath(os.path.join(current_dir, '..')) # EKR/ directory
repo_dir = os.path.abspath(os.path.join(kit_dir, '..'))
sys.path.append(kit_dir)
sys.path.append(repo_dir)
import streamlit as st
from utils.model_wrappers.api_gateway import APIGateway
from utils.vectordb.vector_db import VectorDb
from utils.visual.env_utils import get_wandb_key
CONFIG_PATH = os.path.join(kit_dir, 'config.yaml')
PERSIST_DIRECTORY = os.path.join(kit_dir, 'data/my-vector-db')
load_dotenv(os.path.join(kit_dir, '.env'))
from utils.parsing.sambaparse import parse_doc_universal
# Handle the WANDB_API_KEY resolution before importing weave
#wandb_api_key = get_wandb_key()
# If WANDB_API_KEY is set, proceed with weave initialization
#if wandb_api_key:
# import weave
# Initialize Weave with your project name
# weave.init('sambanova_ekr')
#else:
# print('WANDB_API_KEY is not set. Weave initialization skipped.')
class RetrievalQAChain(Chain):
"""class for question-answering."""
retriever: BaseRetriever
rerank: bool = True
llm: BaseLanguageModel
qa_prompt: BasePromptTemplate
final_k_retrieved_documents: int = 3
@property
def input_keys(self) -> List[str]:
"""Input keys.
:meta private:
"""
return ['question']
@property
def output_keys(self) -> List[str]:
"""Output keys.
:meta private:
"""
return ['answer', 'source_documents']
def _format_docs(self, docs):
return '\n\n'.join(doc.page_content for doc in docs)
def rerank_docs(self, query, docs, final_k):
# Lazy hardcoding for now
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
reranker = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
pairs = []
for d in docs:
pairs.append([query, d.page_content])
with torch.no_grad():
inputs = tokenizer(
pairs,
padding=True,
truncation=True,
return_tensors='pt',
max_length=512,
)
scores = (
reranker(**inputs, return_dict=True)
.logits.view(
-1,
)
.float()
)
scores_list = scores.tolist()
scores_sorted_idx = sorted(range(len(scores_list)), key=lambda k: scores_list[k], reverse=True)
docs_sorted = [docs[k] for k in scores_sorted_idx]
# docs_sorted = [docs[k] for k in scores_sorted_idx if scores_list[k]>0]
docs_sorted = docs_sorted[:final_k]
return docs_sorted
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
qa_chain = self.qa_prompt | self.llm | StrOutputParser()
response = {}
documents = self.retriever.invoke(inputs['question'])
if self.rerank:
documents = self.rerank_docs(inputs['question'], documents, self.final_k_retrieved_documents)
docs = self._format_docs(documents)
response['answer'] = qa_chain.invoke({'question': inputs['question'], 'context': docs})
response['source_documents'] = documents
return response
class DocumentRetrieval:
def __init__(self):
self.vectordb = VectorDb()
config_info = self.get_config_info()
self.api_info = config_info[0]
self.llm_info = config_info[1]
self.embedding_model_info = config_info[2]
self.retrieval_info = config_info[3]
self.prompts = config_info[4]
self.prod_mode = config_info[5]
self.retriever = None
self.llm = self.set_llm()
def get_config_info(self):
"""
Loads json config file
"""
# Read config file
with open(CONFIG_PATH, 'r') as yaml_file:
config = yaml.safe_load(yaml_file)
api_info = config['api']
llm_info = config['llm']
embedding_model_info = config['embedding_model']
retrieval_info = config['retrieval']
prompts = config['prompts']
prod_mode = config['prod_mode']
return api_info, llm_info, embedding_model_info, retrieval_info, prompts, prod_mode
def set_llm(self):
if self.prod_mode:
sambanova_api_key = st.session_state.SAMBANOVA_API_KEY
else:
if 'SAMBANOVA_API_KEY' in st.session_state:
sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY') or st.session_state.SAMBANOVA_API_KEY
else:
sambanova_api_key = os.environ.get('SAMBANOVA_API_KEY')
llm = APIGateway.load_llm(
type=self.api_info,
streaming=True,
coe=self.llm_info['coe'],
do_sample=self.llm_info['do_sample'],
max_tokens_to_generate=self.llm_info['max_tokens_to_generate'],
temperature=self.llm_info['temperature'],
select_expert=self.llm_info['select_expert'],
process_prompt=False,
sambanova_api_key=sambanova_api_key,
)
return llm
def parse_doc(self, docs: List, additional_metadata: Optional[Dict] = None) -> List[Document]:
"""
Parse the uploaded documents and return a list of LangChain documents.
Args:
docs (List[UploadFile]): A list of uploaded files.
additional_metadata (Optional[Dict], optional): Additional metadata to include in the processed documents.
Defaults to an empty dictionary.
Returns:
List[Document]: A list of LangChain documents.
"""
if additional_metadata is None:
additional_metadata = {}
# Create the data/tmp folder if it doesn't exist
temp_folder = os.path.join(kit_dir, 'data/tmp')
if not os.path.exists(temp_folder):
os.makedirs(temp_folder)
else:
# If there are already files there, delete them
for filename in os.listdir(temp_folder):
file_path = os.path.join(temp_folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print(f'Failed to delete {file_path}. Reason: {e}')
# Save all selected files to the tmp dir with their file names
#for doc in docs:
# temp_file = os.path.join(temp_folder, doc.name)
# with open(temp_file, 'wb') as f:
# f.write(doc.getvalue())
for doc_info in docs:
file_name, file_obj = doc_info
temp_file = os.path.join(temp_folder, file_name)
with open(temp_file, 'wb') as f:
f.write(file_obj.read())
# Pass in the temp folder for processing into the parse_doc_universal function
_, _, langchain_docs = parse_doc_universal(doc=temp_folder, additional_metadata=additional_metadata)
return langchain_docs
def load_embedding_model(self):
embeddings = APIGateway.load_embedding_model(
type=self.embedding_model_info['type'],
batch_size=self.embedding_model_info['batch_size'],
coe=self.embedding_model_info['coe'],
select_expert=self.embedding_model_info['select_expert'],
)
return embeddings
def create_vector_store(self, text_chunks, embeddings, output_db=None, collection_name=None):
print(f'Collection name is {collection_name}')
vectorstore = self.vectordb.create_vector_store(
text_chunks, embeddings, output_db=output_db, collection_name=collection_name, db_type='chroma'
)
return vectorstore
def load_vdb(self, db_path, embeddings, collection_name=None):
print(f'Loading collection name is {collection_name}')
vectorstore = self.vectordb.load_vdb(db_path, embeddings, db_type='chroma', collection_name=collection_name)
return vectorstore
def init_retriever(self, vectorstore):
if self.retrieval_info['rerank']:
self.retriever = vectorstore.as_retriever(
search_type='similarity_score_threshold',
search_kwargs={
'score_threshold': self.retrieval_info['score_threshold'],
'k': self.retrieval_info['k_retrieved_documents'],
},
)
else:
self.retriever = vectorstore.as_retriever(
search_type='similarity_score_threshold',
search_kwargs={
'score_threshold': self.retrieval_info['score_threshold'],
'k': self.retrieval_info['final_k_retrieved_documents'],
},
)
def get_qa_retrieval_chain(self):
"""
Generate a qa_retrieval chain using a language model.
This function uses a language model, specifically a SambaNova LLM, to generate a qa_retrieval chain
based on the input vector store of text chunks.
Parameters:
vectorstore (Chroma): A Vector Store containing embeddings of text chunks used as context
for generating the conversation chain.
Returns:
RetrievalQA: A chain ready for QA without memory
"""
# customprompt = load_prompt(os.path.join(kit_dir, self.prompts["qa_prompt"]))
# qa_chain = customprompt | self.llm | StrOutputParser()
# response = {}
# documents = self.retriever.invoke(question)
# if self.retrieval_info["rerank"]:
# documents = self.rerank_docs(question, documents, self.retrieval_info["final_k_retrieved_documents"])
# docs = self._format_docs(documents)
# response["answer"] = qa_chain.invoke({"question": question, "context": docs})
# response["source_documents"] = documents
retrievalQAChain = RetrievalQAChain(
retriever=self.retriever,
llm=self.llm,
qa_prompt=load_prompt(os.path.join(kit_dir, self.prompts['qa_prompt'])),
rerank=self.retrieval_info['rerank'],
final_k_retrieved_documents=self.retrieval_info['final_k_retrieved_documents'],
)
return retrievalQAChain
def get_conversational_qa_retrieval_chain(self):
"""
Generate a conversational retrieval qa chain using a language model.
This function uses a language model, specifically a SambaNova LLM, to generate a conversational_qa_retrieval chain
based on the chat history and the relevant retrieved content from the input vector store of text chunks.
Parameters:
vectorstore (Chroma): A Vector Store containing embeddings of text chunks used as context
for generating the conversation chain.
Returns:
RetrievalQA: A chain ready for QA with memory
"""