File size: 6,363 Bytes
aee6751 ea7e2a4 aee6751 a9ded25 ea7e2a4 11dcd68 d0de684 11dcd68 d0de684 b1d8de3 ea7e2a4 11dcd68 aee6751 11dcd68 ea7e2a4 aee6751 11dcd68 aee6751 ea7e2a4 aee6751 11dcd68 aee6751 d0de684 aee6751 d0de684 aee6751 11dcd68 ea7e2a4 aee6751 ea7e2a4 a9ded25 aee6751 11dcd68 aee6751 11dcd68 aee6751 d0de684 11dcd68 aee6751 d0de684 aee6751 11dcd68 aee6751 11dcd68 aee6751 11dcd68 aee6751 11dcd68 aee6751 11dcd68 aee6751 11dcd68 aee6751 11dcd68 aee6751 93f83bf aee6751 11dcd68 aee6751 11dcd68 aee6751 11dcd68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import gradio as gr
import openai
import time
import re
import os
# Available models
MODELS = [
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
]
# Sambanova API base URL
API_BASE = "https://api.sambanova.ai/v1"
def create_client(api_key=None):
"""Creates an OpenAI client instance."""
if api_key:
openai.api_key = api_key
else:
openai.api_key = os.getenv("API_KEY")
return openai.OpenAI(api_key=openai.api_key, base_url=API_BASE)
def chat_with_ai(message, chat_history, system_prompt):
"""Formats the chat history for the API call."""
messages = [{"role": "system", "content": system_prompt}]
print(type(chat_history))
for tup in chat_history:
print(type(tup))
first_key = list(tup.keys())[0] # First key
last_key = list(tup.keys())[-1] # Last key
messages.append({"role": "user", "content": tup[first_key]})
messages.append({"role": "assistant", "content": tup[last_key]})
messages.append({"role": "user", "content": message})
return messages
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key):
"""Sends the message to the API and gets the response."""
client = create_client(api_key)
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget))
start_time = time.time()
try:
completion = client.chat.completions.create(model=model, messages=messages)
response = completion.choices[0].message.content
thinking_time = time.time() - start_time
return response, thinking_time
except Exception as e:
error_message = f"Error: {str(e)}"
return error_message, time.time() - start_time
def parse_response(response):
"""Parses the response from the API."""
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL)
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL)
answer = answer_match.group(1).strip() if answer_match else ""
reflection = reflection_match.group(1).strip() if reflection_match else ""
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL)
return answer, reflection, steps
def generate(message, history, model, system_prompt, thinking_budget, api_key):
"""Generates the chatbot response."""
response, thinking_time = respond(message, history, model, system_prompt, thinking_budget, api_key)
if response.startswith("Error:"):
return history + [({"role": "system", "content": response},)], ""
answer, reflection, steps = parse_response(response)
messages = []
messages.append({"role": "user", "content": message})
formatted_steps = [f"Step {i}: {step}" for i, step in enumerate(steps, 1)]
all_steps = "\n".join(formatted_steps) + f"\n\nReflection: {reflection}"
messages.append({"role": "assistant", "content": all_steps, "metadata": {"title": f"Thinking Time: {thinking_time:.2f} sec"}})
messages.append({"role": "assistant", "content": answer})
return history + messages, ""
# Define the default system prompt
DEFAULT_SYSTEM_PROMPT = """
You are a helpful assistant in normal conversation.
When given a problem to solve, you are an expert problem-solving assistant.
Your task is to provide a detailed, step-by-step solution to a given question.
Follow these instructions carefully:
1. Read the given question carefully and reset counter between <count> and </count> to {budget}
2. Generate a detailed, logical step-by-step solution.
3. Enclose each step of your solution within <step> and </step> tags.
4. You are allowed to use at most {budget} steps (starting budget),
keep track of it by counting down within tags <count> </count>,
STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them.
5. Do a self-reflection when you are unsure about how to proceed,
based on the self-reflection and reward, decides whether you need to return
to the previous steps.
6. After completing the solution steps, reorganize and synthesize the steps
into the final answer within <answer> and </answer> tags.
7. Provide a critical, honest and subjective self-evaluation of your reasoning
process within <reflection> and </reflection> tags.
8. Assign a quality score to your solution as a float between 0.0 (lowest
quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags.
Example format:
<count> [starting budget] </count>
<step> [Content of step 1] </step>
<count> [remaining budget] </count>
<step> [Content of step 2] </step>
<reflection> [Evaluation of the steps so far] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
<count> [remaining budget] </count>
<step> [Content of step 3 or Content of some previous step] </step>
<count> [remaining budget] </count>
...
<step> [Content of final step] </step>
<count> [remaining budget] </count>
<answer> [Final Answer] </answer> (must give final answer in this format)
<reflection> [Evaluation of the solution] </reflection>
<reward> [Float between 0.0 and 1.0] </reward>
"""
with gr.Blocks() as demo:
gr.Markdown("# Llama3.1-Instruct-O1")
gr.Markdown("[Powered by Llama3.1 models through SambaNova Cloud API](https://sambanova.ai/fast-api?api_ref=907266)")
with gr.Row():
api_key = gr.Textbox(label="API Key", type="password", placeholder="(Optional) Enter your API key here for more availability")
with gr.Row():
model = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0])
thinking_budget = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Thinking Budget", info="maximum times a model can think")
chatbot = gr.Chatbot(label="Chat", show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel", type="messages")
msg = gr.Textbox(label="Type your message here...", placeholder="Enter your message...")
gr.Button("Clear Chat").click(lambda: ([], ""), inputs=None, outputs=[chatbot, msg])
system_prompt = gr.Textbox(label="System Prompt", value=DEFAULT_SYSTEM_PROMPT, lines=15, interactive=True)
msg.submit(generate, inputs=[msg, chatbot, model, system_prompt, thinking_budget, api_key], outputs=[chatbot, msg])
demo.launch(share=True, show_api=False) |