Spaces:
Runtime error
Runtime error
File size: 1,334 Bytes
77829f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
import numpy as np
import cv2
import gradio as gr
def detect_face(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
path = "haarcascade_frontalface_default.xml"
face_cascade = cv2.CascadeClassifier(path)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.05, minNeighbors=17, minSize=(40, 40))
return len(faces)
def face_detector(image):
img_np = np.array(image)
img = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
# img = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
num_faces = detect_face(img)
return num_faces
title = "Face Detector: Counts the Number of Faces in an Image\n\n"
title += "<span style='font-size: smaller;'>Subtitle: The face detector counts the number of faces and returns it. It works fairly well. This is built based on Haar Cascade Algorithm.</span>"
iface = gr.Interface(
fn=face_detector,
inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
outputs="text",
title=title,
examples=[
["sample_faces/angry_face.jpg"],
["sample_faces/beard_man.jpg"],
["sample_faces/bw_face.jpg"],
["sample_faces/faces.jpeg"],
["sample_faces/glass_man.jpg"],
["sample_faces/normal_face.jpg"],
["sample_faces/red_dress.jpg"]
],
allow_flagging=False,
)
if __name__ == "__main__":
iface.launch()
|