Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gtts import gTTS | |
from moviepy.editor import TextClip, AudioFileClip | |
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration | |
import torch | |
import tempfile | |
import os | |
# Initialize RAG model components | |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq") | |
retriever = RagRetriever.from_pretrained("facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True) | |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = model.to(device) | |
def generate_response(input_text): | |
try: | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) | |
generated = model.generate(input_ids) | |
response = tokenizer.batch_decode(generated, skip_special_tokens=True)[0] | |
return response | |
except Exception as e: | |
print(f"Error in generate_response: {e}") | |
return "Error generating response" | |
def text_to_speech(text): | |
try: | |
tts = gTTS(text) | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp3') as temp_audio_file: | |
tts.save(temp_audio_file.name) | |
return temp_audio_file.name | |
except Exception as e: | |
print(f"Error in text_to_speech: {e}") | |
return None | |
def text_to_video(text, audio_filename): | |
try: | |
text_clip = TextClip(text, fontsize=50, color='white', bg_color='black', size=(640, 480)) | |
text_clip = text_clip.set_duration(10) | |
audio_clip = AudioFileClip(audio_filename) | |
video_clip = text_clip.set_audio(audio_clip) | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video_file: | |
video_clip.write_videofile(temp_video_file.name, codec='libx264') | |
return temp_video_file.name | |
except Exception as e: | |
print(f"Error in text_to_video: {e}") | |
return None | |
def process_text(input_text): | |
try: | |
response = generate_response(input_text) | |
audio_file = text_to_speech(response) | |
if audio_file: | |
video_file = text_to_video(response, audio_file) | |
if video_file: | |
return response, audio_file, video_file | |
else: | |
return response, audio_file, "Error generating video" | |
else: | |
return response, "Error generating audio", None | |
except Exception as e: | |
print(f"Error in process_text: {e}") | |
return "Error processing text", None, None | |
iface = gr.Interface( | |
fn=process_text, | |
inputs=gr.Textbox(label="Enter your text:"), | |
outputs=[gr.Textbox(label="RAG Model Response"), gr.Audio(label="Audio"), gr.Video(label="Video")], | |
live=True | |
) | |
iface.launch() | |