PLTNUM / app.py
sagawa's picture
Update app.py
e443961 verified
raw
history blame
6.96 kB
import gradio as gr
import sys
import random
import os
import pandas as pd
import torch
import itertools
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
sys.path.append("scripts/")
from foldseek_util import get_struc_seq
from utils import seed_everything
from models import PLTNUM_PreTrainedModel
from datasets_ import PLTNUMDataset
class Config:
def __init__(self):
self.batch_size = 2
self.use_amp = False
self.num_workers = 1
self.max_length = 512
self.used_sequence = "left"
self.padding_side = "right"
self.task = "classification"
self.sequence_col = "sequence"
self.seed = 42
def predict_stability_with_pdb(model_choice, organism_choice, pdb_files, cfg=Config()):
try:
results = []
for pdb_file in pdb_files:
pdb_path = pdb_file.name
os.system("chmod 777 bin/foldseek")
sequences = get_foldseek_seq(pdb_path)
if not sequences:
results.append(f"Failed to extract sequence from {pdb_file.name}.")
continue
sequence = sequences[2] if model_choice == "SaProt" else sequences[0]
prediction = predict_stability_core(model_choice, organism_choice, sequence, cfg)
results.append(f"Prediction for {pdb_file.name}: {prediction}")
return "<br>".join(results)
except Exception as e:
return f"An error occurred: {str(e)}"
def predict_stability_with_sequence(model_choice, organism_choice, sequence, cfg=Config()):
try:
if not sequence:
return "No valid sequence provided."
return predict_stability_core(model_choice, organism_choice, sequence, cfg)
except Exception as e:
return f"An error occurred: {str(e)}"
def predict_stability_core(model_choice, organism_choice, sequence, cfg=Config()):
cell_line = "HeLa" if organism_choice == "Human" else "NIH3T3"
cfg.model = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
cfg.architecture = model_choice
cfg.model_path = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
output = predict(cfg, sequence)
return output
def get_foldseek_seq(pdb_path):
parsed_seqs = get_struc_seq(
"bin/foldseek",
pdb_path,
["A"],
process_id=random.randint(0, 10000000),
)["A"]
return parsed_seqs
def predict(cfg, sequence):
cfg.token_length = 2 if cfg.architecture == "SaProt" else 1
cfg.device = "cuda" if torch.cuda.is_available() else "cpu"
if cfg.used_sequence == "both":
cfg.max_length += 1
seed_everything(cfg.seed)
df = pd.DataFrame({cfg.sequence_col: [sequence]})
tokenizer = AutoTokenizer.from_pretrained(
cfg.model_path, padding_side=cfg.padding_side
)
cfg.tokenizer = tokenizer
dataset = PLTNUMDataset(cfg, df, train=False)
dataloader = DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
drop_last=False,
)
model = PLTNUM_PreTrainedModel.from_pretrained(cfg.model_path, cfg=cfg)
model.to(cfg.device)
model.eval()
predictions = []
for inputs, _ in dataloader:
inputs = inputs.to(cfg.device)
with torch.no_grad():
with torch.amp.autocast(cfg.device, enabled=cfg.use_amp):
preds = (
torch.sigmoid(model(inputs))
if cfg.task == "classification"
else model(inputs)
)
predictions += preds.cpu().tolist()
predictions = list(itertools.chain.from_iterable(predictions))
outputs = {
"raw prediction values": predictions,
"binary prediction values": [1 if x > 0.5 else 0 for x in predictions]
}
html_output = f"""
<div style='border: 2px solid #4CAF50; padding: 10px; border-radius: 10px;'>
<p><strong>Raw prediction value:</strong> {outputs['raw prediction values'][0]}</p>
<p><strong>Binary prediction values:</strong> {outputs['binary prediction values'][0]}</p>
</div>
"""
return html_output
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# PLTNUM: Protein LifeTime Neural Model
**Predict the protein half-life from its sequence or PDB file.**
"""
)
gr.Image(
"https://github.com/sagawatatsuya/PLTNUM/blob/main/model-image.png?raw=true",
label="Model Image",
)
# Model and Organism selection in the same row to avoid layout issues
with gr.Row():
model_choice = gr.Radio(
choices=["SaProt", "ESM2"],
label="Select PLTNUM's base model.",
value="SaProt",
)
organism_choice = gr.Radio(
choices=["Mouse", "Human"],
label="Select the target organism.",
value="Mouse",
)
with gr.Tabs():
with gr.TabItem("Upload PDB File"):
gr.Markdown("### Upload your PDB files:")
pdb_files = gr.File(label="Upload PDB Files", file_count="multiple")
predict_button = gr.Button("Predict Stability")
prediction_output = gr.HTML(
label="Stability Prediction"
)
predict_button.click(
fn=predict_stability_with_pdb,
inputs=[model_choice, organism_choice, pdb_files],
outputs=prediction_output,
)
with gr.TabItem("Enter Protein Sequence"):
gr.Markdown("### Enter the protein sequence:")
sequence = gr.Textbox(
label="Protein Sequence",
placeholder="Enter your protein sequence here...",
lines=8,
)
predict_button = gr.Button("Predict Stability")
prediction_output = gr.HTML(
label="Stability Prediction"
)
predict_button.click(
fn=predict_stability_with_sequence,
inputs=[model_choice, organism_choice, sequence],
outputs=prediction_output,
)
gr.Markdown(
"""
### How to Use:
- **Select Model**: Choose between 'SaProt' or 'ESM2' for your prediction.
- **Select Organism**: Choose between 'Mouse' or 'Human'.
- **Upload PDB File**: Choose the 'Upload PDB File' tab and upload your file.
- **Enter Sequence**: Alternatively, switch to the 'Enter Protein Sequence' tab and input your sequence.
- **Predict**: Click 'Predict Stability' to receive the prediction.
"""
)
gr.Markdown(
"""
### About the Tool
This tool allows researchers and scientists to predict the stability of proteins using advanced algorithms. It supports both PDB file uploads and direct sequence input.
"""
)
demo.launch()