Spaces:
Runtime error
Runtime error
import random | |
import cv2 | |
import gradio as gr | |
import numpy as np | |
import torch | |
from controlnet_aux import HEDdetector, OpenposeDetector | |
from PIL import Image, ImageFilter | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
from diffusers.pipelines.controlnet.pipeline_controlnet import ControlNetModel | |
from pipeline.pipeline_PowerPaint import StableDiffusionInpaintPipeline as Pipeline | |
from pipeline.pipeline_PowerPaint_ControlNet import StableDiffusionControlNetInpaintPipeline as controlnetPipeline | |
from utils.utils import TokenizerWrapper, add_tokens | |
torch.set_grad_enabled(False) | |
weight_dtype = torch.float16 | |
global pipe | |
pipe = Pipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=weight_dtype) | |
pipe.tokenizer = TokenizerWrapper( | |
from_pretrained="runwayml/stable-diffusion-v1-5", subfolder="tokenizer", revision=None | |
) | |
add_tokens( | |
tokenizer=pipe.tokenizer, | |
text_encoder=pipe.text_encoder, | |
placeholder_tokens=["P_ctxt", "P_shape", "P_obj"], | |
initialize_tokens=["a", "a", "a"], | |
num_vectors_per_token=10, | |
) | |
from safetensors.torch import load_model | |
load_model(pipe.unet, "./models/unet/unet.safetensors") | |
load_model(pipe.text_encoder, "./models/unet/text_encoder.safetensors") | |
pipe = pipe.to("cuda") | |
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") | |
openpose = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
hed = HEDdetector.from_pretrained("lllyasviel/ControlNet") | |
global current_control | |
current_control = "canny" | |
# controlnet_conditioning_scale = 0.8 | |
def set_seed(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
np.random.seed(seed) | |
random.seed(seed) | |
def get_depth_map(image): | |
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") | |
with torch.no_grad(), torch.autocast("cuda"): | |
depth_map = depth_estimator(image).predicted_depth | |
depth_map = torch.nn.functional.interpolate( | |
depth_map.unsqueeze(1), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
image = torch.cat([depth_map] * 3, dim=1) | |
image = image.permute(0, 2, 3, 1).cpu().numpy()[0] | |
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) | |
return image | |
def add_task(prompt, negative_prompt, control_type): | |
# print(control_type) | |
if control_type == "object-removal": | |
promptA = "empty scene blur " + prompt + " P_ctxt" | |
promptB = "empty scene blur " + prompt + " P_ctxt" | |
negative_promptA = negative_prompt + " P_obj" | |
negative_promptB = negative_prompt + " P_obj" | |
elif control_type == "shape-guided": | |
promptA = prompt + " P_shape" | |
promptB = prompt + " P_ctxt" | |
negative_promptA = ( | |
negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry P_shape" | |
) | |
negative_promptB = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry P_ctxt" | |
elif control_type == "image-outpainting": | |
promptA = "empty scene " + prompt + " P_ctxt" | |
promptB = "empty scene " + prompt + " P_ctxt" | |
negative_promptA = negative_prompt + " P_obj" | |
negative_promptB = negative_prompt + " P_obj" | |
else: | |
promptA = prompt + " P_obj" | |
promptB = prompt + " P_obj" | |
negative_promptA = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry, P_obj" | |
negative_promptB = negative_prompt + ", worst quality, low quality, normal quality, bad quality, blurry, P_obj" | |
return promptA, promptB, negative_promptA, negative_promptB | |
def predict( | |
input_image, | |
prompt, | |
fitting_degree, | |
ddim_steps, | |
scale, | |
seed, | |
negative_prompt, | |
task, | |
vertical_expansion_ratio, | |
horizontal_expansion_ratio, | |
): | |
size1, size2 = input_image["image"].convert("RGB").size | |
if task != "image-outpainting": | |
if size1 < size2: | |
input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640))) | |
else: | |
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640)) | |
else: | |
if size1 < size2: | |
input_image["image"] = input_image["image"].convert("RGB").resize((512, int(size2 / size1 * 512))) | |
else: | |
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 512), 512)) | |
if vertical_expansion_ratio != None and horizontal_expansion_ratio != None: | |
o_W, o_H = input_image["image"].convert("RGB").size | |
c_W = int(horizontal_expansion_ratio * o_W) | |
c_H = int(vertical_expansion_ratio * o_H) | |
expand_img = np.ones((c_H, c_W, 3), dtype=np.uint8) * 127 | |
original_img = np.array(input_image["image"]) | |
expand_img[ | |
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H, | |
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W, | |
:, | |
] = original_img | |
blurry_gap = 10 | |
expand_mask = np.ones((c_H, c_W, 3), dtype=np.uint8) * 255 | |
if vertical_expansion_ratio == 1 and horizontal_expansion_ratio != 1: | |
expand_mask[ | |
int((c_H - o_H) / 2.0) : int((c_H - o_H) / 2.0) + o_H, | |
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap, | |
:, | |
] = 0 | |
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio != 1: | |
expand_mask[ | |
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap, | |
int((c_W - o_W) / 2.0) + blurry_gap : int((c_W - o_W) / 2.0) + o_W - blurry_gap, | |
:, | |
] = 0 | |
elif vertical_expansion_ratio != 1 and horizontal_expansion_ratio == 1: | |
expand_mask[ | |
int((c_H - o_H) / 2.0) + blurry_gap : int((c_H - o_H) / 2.0) + o_H - blurry_gap, | |
int((c_W - o_W) / 2.0) : int((c_W - o_W) / 2.0) + o_W, | |
:, | |
] = 0 | |
input_image["image"] = Image.fromarray(expand_img) | |
input_image["mask"] = Image.fromarray(expand_mask) | |
promptA, promptB, negative_promptA, negative_promptB = add_task(prompt, negative_prompt, task) | |
print(promptA, promptB, negative_promptA, negative_promptB) | |
img = np.array(input_image["image"].convert("RGB")) | |
W = int(np.shape(img)[0] - np.shape(img)[0] % 8) | |
H = int(np.shape(img)[1] - np.shape(img)[1] % 8) | |
input_image["image"] = input_image["image"].resize((H, W)) | |
input_image["mask"] = input_image["mask"].resize((H, W)) | |
set_seed(seed) | |
global pipe | |
result = pipe( | |
promptA=promptA, | |
promptB=promptB, | |
tradoff=fitting_degree, | |
tradoff_nag=fitting_degree, | |
negative_promptA=negative_promptA, | |
negative_promptB=negative_promptB, | |
image=input_image["image"].convert("RGB"), | |
mask_image=input_image["mask"].convert("RGB"), | |
width=H, | |
height=W, | |
guidance_scale=scale, | |
num_inference_steps=ddim_steps, | |
).images[0] | |
mask_np = np.array(input_image["mask"].convert("RGB")) | |
red = np.array(result).astype("float") * 1 | |
red[:, :, 0] = 180.0 | |
red[:, :, 2] = 0 | |
red[:, :, 1] = 0 | |
result_m = np.array(result) | |
result_m = Image.fromarray( | |
( | |
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red | |
).astype("uint8") | |
) | |
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=3)) | |
m_img = np.asarray(m_img) / 255.0 | |
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0 | |
ours_np = np.asarray(result) / 255.0 | |
ours_np = ours_np * m_img + (1 - m_img) * img_np | |
result_paste = Image.fromarray(np.uint8(ours_np * 255)) | |
dict_res = [input_image["mask"].convert("RGB"), result_m] | |
dict_out = [input_image["image"].convert("RGB"), result_paste] | |
return dict_out, dict_res | |
def predict_controlnet( | |
input_image, | |
input_control_image, | |
control_type, | |
prompt, | |
ddim_steps, | |
scale, | |
seed, | |
negative_prompt, | |
controlnet_conditioning_scale, | |
): | |
promptA = prompt + " P_obj" | |
promptB = prompt + " P_obj" | |
negative_promptA = negative_prompt | |
negative_promptB = negative_prompt | |
size1, size2 = input_image["image"].convert("RGB").size | |
if size1 < size2: | |
input_image["image"] = input_image["image"].convert("RGB").resize((640, int(size2 / size1 * 640))) | |
else: | |
input_image["image"] = input_image["image"].convert("RGB").resize((int(size1 / size2 * 640), 640)) | |
img = np.array(input_image["image"].convert("RGB")) | |
W = int(np.shape(img)[0] - np.shape(img)[0] % 8) | |
H = int(np.shape(img)[1] - np.shape(img)[1] % 8) | |
input_image["image"] = input_image["image"].resize((H, W)) | |
input_image["mask"] = input_image["mask"].resize((H, W)) | |
global current_control | |
global pipe | |
base_control = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype) | |
control_pipe = controlnetPipeline( | |
pipe.vae, pipe.text_encoder, pipe.tokenizer, pipe.unet, base_control, pipe.scheduler, None, None, False | |
) | |
control_pipe = control_pipe.to("cuda") | |
current_control = "canny" | |
if current_control != control_type: | |
if control_type == "canny" or control_type is None: | |
control_pipe.controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-canny", torch_dtype=weight_dtype | |
) | |
elif control_type == "pose": | |
control_pipe.controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-openpose", torch_dtype=weight_dtype | |
) | |
elif control_type == "depth": | |
control_pipe.controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-depth", torch_dtype=weight_dtype | |
) | |
else: | |
control_pipe.controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-hed", torch_dtype=weight_dtype | |
) | |
control_pipe = control_pipe.to("cuda") | |
current_control = control_type | |
controlnet_image = input_control_image | |
if current_control == "canny": | |
controlnet_image = controlnet_image.resize((H, W)) | |
controlnet_image = np.array(controlnet_image) | |
controlnet_image = cv2.Canny(controlnet_image, 100, 200) | |
controlnet_image = controlnet_image[:, :, None] | |
controlnet_image = np.concatenate([controlnet_image, controlnet_image, controlnet_image], axis=2) | |
controlnet_image = Image.fromarray(controlnet_image) | |
elif current_control == "pose": | |
controlnet_image = openpose(controlnet_image) | |
elif current_control == "depth": | |
controlnet_image = controlnet_image.resize((H, W)) | |
controlnet_image = get_depth_map(controlnet_image) | |
else: | |
controlnet_image = hed(controlnet_image) | |
mask_np = np.array(input_image["mask"].convert("RGB")) | |
controlnet_image = controlnet_image.resize((H, W)) | |
set_seed(seed) | |
result = control_pipe( | |
promptA=promptB, | |
promptB=promptA, | |
tradoff=1.0, | |
tradoff_nag=1.0, | |
negative_promptA=negative_promptA, | |
negative_promptB=negative_promptB, | |
image=input_image["image"].convert("RGB"), | |
mask_image=input_image["mask"].convert("RGB"), | |
control_image=controlnet_image, | |
width=H, | |
height=W, | |
guidance_scale=scale, | |
controlnet_conditioning_scale=controlnet_conditioning_scale, | |
num_inference_steps=ddim_steps, | |
).images[0] | |
red = np.array(result).astype("float") * 1 | |
red[:, :, 0] = 180.0 | |
red[:, :, 2] = 0 | |
red[:, :, 1] = 0 | |
result_m = np.array(result) | |
result_m = Image.fromarray( | |
( | |
result_m.astype("float") * (1 - mask_np.astype("float") / 512.0) + mask_np.astype("float") / 512.0 * red | |
).astype("uint8") | |
) | |
mask_np = np.array(input_image["mask"].convert("RGB")) | |
m_img = input_image["mask"].convert("RGB").filter(ImageFilter.GaussianBlur(radius=4)) | |
m_img = np.asarray(m_img) / 255.0 | |
img_np = np.asarray(input_image["image"].convert("RGB")) / 255.0 | |
ours_np = np.asarray(result) / 255.0 | |
ours_np = ours_np * m_img + (1 - m_img) * img_np | |
result_paste = Image.fromarray(np.uint8(ours_np * 255)) | |
return [input_image["image"].convert("RGB"), result_paste], [controlnet_image, result_m] | |
def infer( | |
input_image, | |
text_guided_prompt, | |
text_guided_negative_prompt, | |
shape_guided_prompt, | |
shape_guided_negative_prompt, | |
fitting_degree, | |
ddim_steps, | |
scale, | |
seed, | |
task, | |
enable_control, | |
input_control_image, | |
control_type, | |
vertical_expansion_ratio, | |
horizontal_expansion_ratio, | |
outpaint_prompt, | |
outpaint_negative_prompt, | |
controlnet_conditioning_scale, | |
removal_prompt, | |
removal_negative_prompt, | |
): | |
if task == "text-guided": | |
prompt = text_guided_prompt | |
negative_prompt = text_guided_negative_prompt | |
elif task == "shape-guided": | |
prompt = shape_guided_prompt | |
negative_prompt = shape_guided_negative_prompt | |
elif task == "object-removal": | |
prompt = removal_prompt | |
negative_prompt = removal_negative_prompt | |
elif task == "image-outpainting": | |
prompt = outpaint_prompt | |
negative_prompt = outpaint_negative_prompt | |
return predict( | |
input_image, | |
prompt, | |
fitting_degree, | |
ddim_steps, | |
scale, | |
seed, | |
negative_prompt, | |
task, | |
vertical_expansion_ratio, | |
horizontal_expansion_ratio, | |
) | |
else: | |
task = "text-guided" | |
prompt = text_guided_prompt | |
negative_prompt = text_guided_negative_prompt | |
if enable_control and task == "text-guided": | |
return predict_controlnet( | |
input_image, | |
input_control_image, | |
control_type, | |
prompt, | |
ddim_steps, | |
scale, | |
seed, | |
negative_prompt, | |
controlnet_conditioning_scale, | |
) | |
else: | |
return predict(input_image, prompt, fitting_degree, ddim_steps, scale, seed, negative_prompt, task, None, None) | |
def select_tab_text_guided(): | |
return "text-guided" | |
def select_tab_object_removal(): | |
return "object-removal" | |
def select_tab_image_outpainting(): | |
return "image-outpainting" | |
def select_tab_shape_guided(): | |
return "shape-guided" | |
with gr.Blocks(css="style.css") as demo: | |
with gr.Row(): | |
gr.Markdown( | |
"<div align='center'><font size='18'>PowerPaint: High-Quality Versatile Image Inpainting</font></div>" # noqa | |
) | |
with gr.Row(): | |
gr.Markdown( | |
"<div align='center'><font size='5'><a href='https://powerpaint.github.io/'>Project Page</a>  " # noqa | |
"<a href='https://arxiv.org/abs/2312.03594/'>Paper</a>  " | |
"<a href='https://github.com/open-mmlab/mmagic/tree/main/projects/powerpaint'>Code</a> </font></div>" # noqa | |
) | |
with gr.Row(): | |
gr.Markdown( | |
"**Note:** Due to network-related factors, the page may experience occasional bugs! If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content." # noqa | |
) | |
# Attention: Due to network-related factors, the page may experience occasional bugs. If the inpainting results deviate significantly from expectations, consider toggling between task options to refresh the content. | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Input image and draw mask") | |
input_image = gr.Image(source="upload", tool="sketch", type="pil") | |
task = gr.Radio( | |
["text-guided", "object-removal", "shape-guided", "image-outpainting"], show_label=False, visible=False | |
) | |
# Text-guided object inpainting | |
with gr.Tab("Text-guided object inpainting") as tab_text_guided: | |
enable_text_guided = gr.Checkbox( | |
label="Enable text-guided object inpainting", value=True, interactive=False | |
) | |
text_guided_prompt = gr.Textbox(label="Prompt") | |
text_guided_negative_prompt = gr.Textbox(label="negative_prompt") | |
gr.Markdown("### Controlnet setting") | |
enable_control = gr.Checkbox( | |
label="Enable controlnet", info="Enable this if you want to use controlnet" | |
) | |
controlnet_conditioning_scale = gr.Slider( | |
label="controlnet conditioning scale", | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.5, | |
) | |
control_type = gr.Radio(["canny", "pose", "depth", "hed"], label="Control type") | |
input_control_image = gr.Image(source="upload", type="pil") | |
tab_text_guided.select(fn=select_tab_text_guided, inputs=None, outputs=task) | |
# Object removal inpainting | |
with gr.Tab("Object removal inpainting") as tab_object_removal: | |
enable_object_removal = gr.Checkbox( | |
label="Enable object removal inpainting", | |
value=True, | |
info="The recommended configuration for the Guidance Scale is 10 or higher. \ | |
If undesired objects appear in the masked area, \ | |
you can address this by specifically increasing the Guidance Scale.", | |
interactive=False, | |
) | |
removal_prompt = gr.Textbox(label="Prompt") | |
removal_negative_prompt = gr.Textbox(label="negative_prompt") | |
tab_object_removal.select(fn=select_tab_object_removal, inputs=None, outputs=task) | |
# Object image outpainting | |
with gr.Tab("Image outpainting") as tab_image_outpainting: | |
enable_object_removal = gr.Checkbox( | |
label="Enable image outpainting", | |
value=True, | |
info="The recommended configuration for the Guidance Scale is 10 or higher. \ | |
If unwanted random objects appear in the extended image region, \ | |
you can enhance the cleanliness of the extension area by increasing the Guidance Scale.", | |
interactive=False, | |
) | |
outpaint_prompt = gr.Textbox(label="Outpainting_prompt") | |
outpaint_negative_prompt = gr.Textbox(label="Outpainting_negative_prompt") | |
horizontal_expansion_ratio = gr.Slider( | |
label="horizontal expansion ratio", | |
minimum=1, | |
maximum=4, | |
step=0.05, | |
value=1, | |
) | |
vertical_expansion_ratio = gr.Slider( | |
label="vertical expansion ratio", | |
minimum=1, | |
maximum=4, | |
step=0.05, | |
value=1, | |
) | |
tab_image_outpainting.select(fn=select_tab_image_outpainting, inputs=None, outputs=task) | |
# Shape-guided object inpainting | |
with gr.Tab("Shape-guided object inpainting") as tab_shape_guided: | |
enable_shape_guided = gr.Checkbox( | |
label="Enable shape-guided object inpainting", value=True, interactive=False | |
) | |
shape_guided_prompt = gr.Textbox(label="shape_guided_prompt") | |
shape_guided_negative_prompt = gr.Textbox(label="shape_guided_negative_prompt") | |
fitting_degree = gr.Slider( | |
label="fitting degree", | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=1, | |
) | |
tab_shape_guided.select(fn=select_tab_shape_guided, inputs=None, outputs=task) | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=45, step=1) | |
scale = gr.Slider( | |
label="Guidance Scale", | |
info="For object removal and image outpainting, it is recommended to set the value at 10 or above.", | |
minimum=0.1, | |
maximum=30.0, | |
value=7.5, | |
step=0.1, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=2147483647, | |
step=1, | |
randomize=True, | |
) | |
with gr.Column(): | |
gr.Markdown("### Inpainting result") | |
inpaint_result = gr.Gallery(label="Generated images", show_label=False, columns=2) | |
gr.Markdown("### Mask") | |
gallery = gr.Gallery(label="Generated masks", show_label=False, columns=2) | |
run_button.click( | |
fn=infer, | |
inputs=[ | |
input_image, | |
text_guided_prompt, | |
text_guided_negative_prompt, | |
shape_guided_prompt, | |
shape_guided_negative_prompt, | |
fitting_degree, | |
ddim_steps, | |
scale, | |
seed, | |
task, | |
enable_control, | |
input_control_image, | |
control_type, | |
vertical_expansion_ratio, | |
horizontal_expansion_ratio, | |
outpaint_prompt, | |
outpaint_negative_prompt, | |
controlnet_conditioning_scale, | |
removal_prompt, | |
removal_negative_prompt, | |
], | |
outputs=[inpaint_result, gallery], | |
) | |
demo.queue() | |
demo.launch(share=False, server_name="0.0.0.0", server_port=7860) | |