Spaces:
Runtime error
Runtime error
import os | |
import platform | |
import random | |
import time | |
from dataclasses import asdict, dataclass | |
from pathlib import Path | |
import gradio as gr | |
import psutil | |
from about_time import about_time | |
from ctransformers import AutoModelForCausalLM | |
from dl_hf_model import dl_hf_model | |
from loguru import logger | |
URL = "https://huggingface.co/s3nh/chinese-alpaca-2-7b-GGML/blob/main/chinese-alpaca-2-7b.ggmlv3.q5_1.bin" # 4.05G | |
_ = ( | |
"golay" in platform.node() | |
or "okteto" in platform.node() | |
or Path("/kaggle").exists() | |
# or psutil.cpu_count(logical=False) < 4 | |
or 1 # run 7b in hf | |
) | |
if _: | |
url = "https://huggingface.co/s3nh/chinese-alpaca-2-7b-GGML/blob/main/chinese-alpaca-2-7b.ggmlv3.q5_1.bin" # 2.87G | |
prompt_template = """Below is an instruction that describes a task. Write a response that appropriately completes the request. | |
### Instruction: {user_prompt} | |
### Response: | |
""" | |
prompt_template = """System: You are a helpful, | |
respectful and honest assistant. Always answer as | |
helpfully as possible, while being safe. Your answers | |
should not include any harmful, unethical, racist, | |
sexist, toxic, dangerous, or illegal content. Please | |
ensure that your responses are socially unbiased and | |
positive in nature. If a question does not make any | |
sense, or is not factually coherent, explain why instead | |
of answering something not correct. If you don't know | |
the answer to a question, please don't share false | |
information. | |
User: {prompt} | |
Assistant: """ | |
prompt_template = """System: You are a helpful assistant. | |
User: {prompt} | |
Assistant: """ | |
prompt_template = """Question: {question} | |
Answer: Let's work this out in a step by step way to be sure we have the right answer.""" | |
prompt_template = """[INST] <> | |
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible assistant. Think step by step. | |
<> | |
What NFL team won the Super Bowl in the year Justin Bieber was born? | |
[/INST]""" | |
prompt_template = """[INST] <<SYS>> | |
You are an unhelpful assistant. Always answer as helpfully as possible. Think step by step. <</SYS>> | |
{question} [/INST] | |
""" | |
prompt_template = """[INST] <<SYS>> | |
You are a helpful assistant. | |
<</SYS>> | |
{question} [/INST] | |
""" | |
prompt_template = """### HUMAN: | |
{question} | |
### RESPONSE:""" | |
prompt_template = """<|prompt|>:{question}</s> | |
<|answer|>:""" | |
prompt_template = """SYSTEM: | |
USER: {question} | |
ASSISTANT: """ | |
_ = [elm for elm in prompt_template.splitlines() if elm.strip()] | |
stop_string = [elm.split(":")[0] + ":" for elm in _][-2] | |
logger.debug(f"{stop_string=} not used") | |
_ = psutil.cpu_count(logical=False) - 1 | |
cpu_count: int = int(_) if _ else 1 | |
logger.debug(f"{cpu_count=}") | |
LLM = None | |
try: | |
model_loc, file_size = dl_hf_model(url) | |
except Exception as exc_: | |
logger.error(exc_) | |
raise SystemExit(1) from exc_ | |
LLM = AutoModelForCausalLM.from_pretrained( | |
model_loc, | |
model_type="llama", | |
) | |
logger.info(f"done load llm {model_loc=} {file_size=}G") | |
os.environ["TZ"] = "Asia/Shanghai" | |
try: | |
time.tzset() | |
logger.warning("Windows, cant run time.tzset()") | |
except Exception: | |
logger.warning("Windows, cant run time.tzset()") | |
class GenerationConfig: | |
temperature: float = 0.7 | |
top_k: int = 50 | |
top_p: float = 0.9 | |
repetition_penalty: float = 1.0 | |
max_new_tokens: int = 512 | |
seed: int = 42 | |
reset: bool = False | |
stream: bool = True | |
# threads: int = cpu_count | |
# stop: list[str] = field(default_factory=lambda: [stop_string]) | |
def generate( | |
question: str, | |
llm=LLM, | |
config: GenerationConfig = GenerationConfig(), | |
): | |
"""Run model inference, will return a Generator if streaming is true.""" | |
prompt = prompt_template.format(question=question) | |
return llm( | |
prompt, | |
**asdict(config), | |
) | |
logger.debug(f"{asdict(GenerationConfig())=}") | |
def user(user_message, history): | |
history.append([user_message, None]) | |
return user_message, history | |
def user1(user_message, history): | |
history.append([user_message, None]) | |
return "", history | |
def bot_(history): | |
user_message = history[-1][0] | |
resp = random.choice(["How are you?", "I love you", "I'm very hungry"]) | |
bot_message = user_message + ": " + resp | |
history[-1][1] = "" | |
for character in bot_message: | |
history[-1][1] += character | |
time.sleep(0.02) | |
yield history | |
history[-1][1] = resp | |
yield history | |
def bot(history): | |
user_message = history[-1][0] | |
response = [] | |
logger.debug(f"{user_message=}") | |
with about_time() as atime: | |
flag = 1 | |
prefix = "" | |
then = time.time() | |
logger.debug("about to generate") | |
config = GenerationConfig(reset=True) | |
for elm in generate(user_message, config=config): | |
if flag == 1: | |
logger.debug("in the loop") | |
prefix = f"({time.time() - then:.2f}s) " | |
flag = 0 | |
print(prefix, end="", flush=True) | |
logger.debug(f"{prefix=}") | |
print(elm, end="", flush=True) | |
response.append(elm) | |
history[-1][1] = prefix + "".join(response) | |
yield history | |
_ = ( | |
f"(time elapsed: {atime.duration_human}, " | |
f"{atime.duration/len(''.join(response)):.2f}s/char)" | |
) | |
history[-1][1] = "".join(response) + f"\n{_}" | |
yield history | |
def predict_api(prompt): | |
logger.debug(f"{prompt=}") | |
try: | |
# user_prompt = prompt | |
config = GenerationConfig( | |
temperature=0.2, | |
top_k=10, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
max_new_tokens=512, # adjust as needed | |
seed=42, | |
reset=True, | |
stream=False, | |
) | |
response = generate( | |
prompt, | |
config=config, | |
) | |
logger.debug(f"api: {response=}") | |
except Exception as exc: | |
logger.error(exc) | |
response = f"{exc=}" | |
return response | |
css = """ | |
.importantButton { | |
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important; | |
border: none !important; | |
} | |
.importantButton:hover { | |
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important; | |
border: none !important; | |
} | |
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;} | |
.xsmall {font-size: x-small;} | |
""" | |
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """ | |
examples_list = [ | |
["> 你能不能详细介绍一下怎么做披萨? 制作披萨的步骤大致如下:"], | |
["你推荐我买最新款的iPhone吗?"], | |
["你是一个资深导游,你能介绍一下中国的首都吗?"], | |
["你好,我们聊聊音乐吧"], | |
] | |
logger.info("start block") | |
with gr.Blocks( | |
title=f"{Path(model_loc).name}", | |
theme=gr.themes.Soft(text_size="sm", spacing_size="sm"), | |
css=css, | |
) as block: | |
# buff_var = gr.State("") | |
with gr.Accordion("🎈 Info", open=False): | |
# gr.HTML( | |
# """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>""" | |
# ) | |
gr.Markdown( | |
f"""<h5><center>{Path(model_loc).name}</center></h4> | |
Most examples are meant for another model. | |
You probably should try to test | |
some related prompts.""", | |
elem_classes="xsmall", | |
) | |
# chatbot = gr.Chatbot().style(height=700) # 500 | |
chatbot = gr.Chatbot(height=500) | |
# buff = gr.Textbox(show_label=False, visible=True) | |
with gr.Row(): | |
with gr.Column(scale=5): | |
msg = gr.Textbox( | |
label="Chat Message Box", | |
placeholder="Ask me anything (press Shift+Enter or click Submit to send)", | |
show_label=False, | |
# container=False, | |
lines=6, | |
max_lines=30, | |
show_copy_button=True, | |
# ).style(container=False) | |
) | |
with gr.Column(scale=1, min_width=50): | |
with gr.Row(): | |
submit = gr.Button("Submit", elem_classes="xsmall") | |
stop = gr.Button("Stop", visible=True) | |
clear = gr.Button("Clear History", visible=True) | |
with gr.Row(visible=False): | |
with gr.Accordion("Advanced Options:", open=False): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
system = gr.Textbox( | |
label="System Prompt", | |
value=prompt_template, | |
show_label=False, | |
container=False, | |
# ).style(container=False) | |
) | |
with gr.Column(): | |
with gr.Row(): | |
change = gr.Button("Change System Prompt") | |
reset = gr.Button("Reset System Prompt") | |
with gr.Accordion("Example Inputs", open=True): | |
examples = gr.Examples( | |
examples=examples_list, | |
inputs=[msg], | |
examples_per_page=40, | |
) | |
# with gr.Row(): | |
with gr.Accordion("Disclaimer", open=True): | |
_ = Path(model_loc).name | |
gr.Markdown( | |
"Disclaimer: I AM NOT RESPONSIBLE FOR ANY PROMPT PROVIDED BY USER AND PROMPT RETURNED FROM THE MODEL. THIS APP SHOULD BE USED FOR EDUCATIONAL PURPOSE" | |
"WITHOUT ANY OFFENSIVE, AGGRESIVE INTENTS. {_} can produce factually incorrect output, and should not be relied on to produce " | |
f"factually accurate information. {_} was trained on various public datasets; while great efforts " | |
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, " | |
"biased, or otherwise offensive outputs.", | |
elem_classes=["disclaimer"], | |
) | |
msg_submit_event = msg.submit( | |
# fn=conversation.user_turn, | |
fn=user, | |
inputs=[msg, chatbot], | |
outputs=[msg, chatbot], | |
queue=True, | |
show_progress="full", | |
# api_name=None, | |
).then(bot, chatbot, chatbot, queue=True) | |
submit_click_event = submit.click( | |
# fn=lambda x, y: ("",) + user(x, y)[1:], # clear msg | |
fn=user1, # clear msg | |
inputs=[msg, chatbot], | |
outputs=[msg, chatbot], | |
queue=True, | |
# queue=False, | |
show_progress="full", | |
# api_name=None, | |
).then(bot, chatbot, chatbot, queue=True) | |
stop.click( | |
fn=None, | |
inputs=None, | |
outputs=None, | |
cancels=[msg_submit_event, submit_click_event], | |
queue=False, | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
with gr.Accordion("For Chat/Translation API", open=False, visible=False): | |
input_text = gr.Text() | |
api_btn = gr.Button("Go", variant="primary") | |
out_text = gr.Text() | |
api_btn.click( | |
predict_api, | |
input_text, | |
out_text, | |
api_name="api", | |
) | |
# block.load(update_buff, [], buff, every=1) | |
# block.load(update_buff, [buff_var], [buff_var, buff], every=1) | |
# concurrency_count=5, max_size=20 | |
# max_size=36, concurrency_count=14 | |
# CPU cpu_count=2 16G, model 7G | |
# CPU UPGRADE cpu_count=8 32G, model 7G | |
# does not work | |
_ = """ | |
# _ = int(psutil.virtual_memory().total / 10**9 // file_size - 1) | |
# concurrency_count = max(_, 1) | |
if psutil.cpu_count(logical=False) >= 8: | |
# concurrency_count = max(int(32 / file_size) - 1, 1) | |
else: | |
# concurrency_count = max(int(16 / file_size) - 1, 1) | |
# """ | |
concurrency_count = 1 | |
logger.info(f"{concurrency_count=}") | |
block.queue(concurrency_count=concurrency_count, max_size=5).launch(debug=True) |