File size: 10,010 Bytes
2846f20
 
 
3ae0fe0
 
85894bf
 
3ae0fe0
85894bf
 
 
 
 
 
 
3ae0fe0
85894bf
 
2846f20
85894bf
 
 
 
 
 
 
 
38e18ec
85894bf
2846f20
85894bf
 
 
 
2846f20
85894bf
 
 
2846f20
 
0546764
85894bf
 
 
 
 
 
 
 
 
 
 
2846f20
85894bf
 
 
 
3ae0fe0
38e18ec
3ae0fe0
 
 
 
 
 
85894bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ae0fe0
 
 
 
 
0546764
85894bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0546764
85894bf
0546764
2846f20
 
0546764
2846f20
0546764
 
 
 
3ae0fe0
 
85894bf
 
 
 
 
 
 
 
3ae0fe0
2846f20
85894bf
 
 
 
 
 
 
2846f20
 
85894bf
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import streamlit as st
import replicate
import os
from transformers import AutoTokenizer

# App title
st.set_page_config(page_title="Snowflake Arctic")

def main():
    """Execution starts here."""
    get_replicate_api_token()
    display_sidebar_ui()
    init_chat_history()
    display_chat_messages()
    get_and_process_prompt()

def get_replicate_api_token():
    os.environ['REPLICATE_API_TOKEN'] = st.secrets['REPLICATE_API_TOKEN']

def display_sidebar_ui():
    with st.sidebar:
        st.title('Snowflake Arctic')
        st.subheader("Adjust model parameters")
        st.slider('temperature', min_value=0.01, max_value=5.0, value=0.3,
                                step=0.01, key="temperature")
        st.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01,
                          key="top_p")

        st.button('Clear chat history', on_click=clear_chat_history)

        st.sidebar.caption('Build your own app powered by Arctic and [enter to win](https://arctic-streamlit-hackathon.devpost.com/) $10k in prizes.')

        st.subheader("About")
        st.caption('Built by [Snowflake](https://snowflake.com/) to demonstrate [Snowflake Arctic](https://www.snowflake.com/blog/arctic-open-and-efficient-foundation-language-models-snowflake). App hosted on [Streamlit Community Cloud](https://streamlit.io/cloud). Model hosted by [Replicate](https://replicate.com/snowflake/snowflake-arctic-instruct).')

        # # # Uncomment to show debug info
        # st.subheader("Debug")
        # st.write(st.session_state)

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "Hi. I'm Arctic, a new, efficient, intelligent, and truly open language model created by Snowflake AI Research. Ask me anything."}]
    st.session_state.chat_aborted = False

def init_chat_history():
    """Create a st.session_state.messages list to store chat messages"""
    if "messages" not in st.session_state:
        clear_chat_history()
        check_safety()

def display_chat_messages():
    # Set assistant icon to Snowflake logo
    icons = {"assistant": "./Snowflake_Logomark_blue.svg", "user": "⛷️"}

    # Display the messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"], avatar=icons[message["role"]]):
            st.write(message["content"])

@st.cache_resource(show_spinner=False)
def get_tokenizer():
    """Get a tokenizer to make sure we're not sending too much text
    text to the Model. Eventually we will replace this with ArcticTokenizer
    """
    return AutoTokenizer.from_pretrained("huggyllama/llama-7b")

@st.cache_resource(show_spinner=False)
def get_llamaguard_deployment():
    return replicate.deployments.get("snowflake/llamaguard")

def check_safety(disable=False) -> bool: 
    if disable:
        return True

    # with st.spinner("Checking prompt safety ..."):
    deployment = get_llamaguard_deployment()
    conversation_history = st.session_state.messages
    prediction = deployment.predictions.create(
      input = { "prompt": f"[INST] Task: Check if there is unsafe content in 'Agent' messages in conversations according our safety policy with the below categories.\n\n<BEGIN UNSAFE CONTENT CATEGORIES>\nO1: Violence and Hate.\nShould not\n- Help people plan or engage in violence.\n- Encourage people to engage in violence.\n- Express hateful, derogatory, or demeaning sentiments against people based on sensitive personal characteristics like their race, color, religion, national origin, sexual orientation, gender, gender identity, or disability.\n- Encourage discrimination against people based on those characteristics and should not use slurs or create insults based on those characteristics.\nCan\n- Provide information on violence and discrimination.\n- Discuss the topics of hate and violence, and can discuss historical events involving violence.\nO2: Sexual Content.\nShould not\n- Engage in sexually explicit (i.e., erotic) conversations and should not encourage people to engage in sexual activities.\nCan\n- Discuss topics related to sexuality and sexual education.\n- Provide general information regarding sexual activities.\n- Provide guidance on topics related to sexual health.\nO3: Criminal Planning.\nShould not\n- Help people plan or engage in criminal activities like theft, kidnapping, or financial crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in criminal activities or condone criminal behavior.\nCan\n- Help people understand how crimes are committed, provided that the response is not so detailed that it could be used to provide a roadmap for future crimes.\n- Help people understand how systems work that are used to prevent crimes, provided those descriptions do not provide detailed information on how to defeat those systems.\nO4: Guns and Illegal Weapons.\nShould not\n- Assist in the planning or execution of firearm or illegal weapons crimes, especially when the person indicates that they may act on the information provided to them.\n- Encourage people to engage in firearm or illegal weapons crimes or condone such behavior.\nCan\n- Discuss firearms and the arguments for and against firearm ownership.\nO5: Regulated or Controlled Substances.\nShould not\n- Encourage or assist people in the trafficking, consumption, or use of regulated or controlled substances, including but not limited to illegal drugs, tobacco, alcohol, and cannabis.\n- Assist or encourage people to create such substances when it is illegal to do so.\nCan\n- Discuss the use of regulated or controlled substances, and can provide general information on those substances (ex: what their chemical composition is and what their effects are).\n- Provide information on how those substances are manufactured, provided that the information is not so detailed as to provide step-by-step instructions for their creation.\nO6: Self-Harm.\nShould not\n- Encourage people to harm themselves.\n- Romanticize or condone self-harm or suicide.\n- Provide information regarding the methods of suicide or self-harm.\n- Provide any information or advice, other than information regarding appropriate health resources, to people who express or imply that they wish to harm themselves.\nCan\n- Provide general information regarding self-harm and suicide (ex: statistics, the mental health challenges faced by those who take these actions).\nShould\n- Provide information regarding appropriate health resources to people who imply or express the desire to harm themselves.\n<END UNSAFE CONTENT CATEGORIES>\n\n<BEGIN CONVERSATION>\n\n{conversation_history}\n\n<END CONVERSATION>\n\nProvide your safety assessment for Agent in the above conversation:\n- First line must read 'safe' or 'unsafe'.\n- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]" }
    )
    prediction.wait()
    output = prediction.output

    if output is not None and "unsafe" in output:
        return False
    else:
        return True

def get_num_tokens(prompt):
    """Get the number of tokens in a given prompt"""
    tokenizer = get_tokenizer()
    tokens = tokenizer.tokenize(prompt)
    return len(tokens)

def abort_chat(error_message: str):
    """Display an error message requiring the chat to be cleared. 
    Forces a rerun of the app."""
    assert error_message, "Error message must be provided."
    error_message = f":red[{error_message}]"
    if st.session_state.messages[-1]["role"] != "assistant":
        st.session_state.messages.append({"role": "assistant", "content": error_message})
    else:
        st.session_state.messages[-1]["content"] = error_message
    st.session_state.chat_aborted = True
    st.rerun()

def get_and_process_prompt():
    """Get the user prompt and process it"""
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant", avatar="./Snowflake_Logomark_blue.svg"):
            response = generate_arctic_response()
            st.write_stream(response)

    if st.session_state.chat_aborted:
        st.button('Reset chat', on_click=clear_chat_history, key="clear_chat_history")
        st.chat_input(disabled=True)
    elif prompt := st.chat_input():
        st.session_state.messages.append({"role": "user", "content": prompt})
        st.rerun()

def generate_arctic_response():
    """String generator for the Snowflake Arctic response."""
    prompt = []
    for dict_message in st.session_state.messages:
        if dict_message["role"] == "user":
            prompt.append("<|im_start|>user\n" + dict_message["content"] + "<|im_end|>")
        else:
            prompt.append("<|im_start|>assistant\n" + dict_message["content"] + "<|im_end|>")
    
    prompt.append("<|im_start|>assistant")
    prompt.append("")
    prompt_str = "\n".join(prompt)

    num_tokens = get_num_tokens(prompt_str)
    max_tokens = 1500
    
    if num_tokens >= max_tokens:
        abort_chat(f"Conversation length too long. Please keep it under {max_tokens} tokens.")
    
    st.session_state.messages.append({"role": "assistant", "content": ""})
    for event_index, event in enumerate(replicate.stream("snowflake/snowflake-arctic-instruct",
                           input={"prompt": prompt_str,
                                  "prompt_template": r"{prompt}",
                                  "temperature": st.session_state.temperature,
                                  "top_p": st.session_state.top_p,
                                  })):
        if (event_index + 0) % 50 == 0:
            if not check_safety():
                abort_chat("I cannot answer this question.")
        st.session_state.messages[-1]["content"] += str(event)
        yield str(event)

    # Final safety check...
    if not check_safety():
        abort_chat("I cannot answer this question.")

if __name__ == "__main__":
    main()