da_nsfw_checker / app.py
rogerxavier's picture
Update app.py
044ae9f verified
raw
history blame
6.45 kB
import os, re, cv2
from typing import Mapping, Tuple, Dict
import numpy as np
import io
import pandas as pd
from PIL import Image
from huggingface_hub import hf_hub_download
from onnxruntime import InferenceSession
from fastapi import FastAPI, File, UploadFile,Body,Query,Response
import uvicorn
from typing import List
app = FastAPI()
# noinspection PyUnresolvedReferences
def make_square(img, target_size):
old_size = img.shape[:2]
desired_size = max(old_size)
desired_size = max(desired_size, target_size)
delta_w = desired_size - old_size[1]
delta_h = desired_size - old_size[0]
top, bottom = delta_h // 2, delta_h - (delta_h // 2)
left, right = delta_w // 2, delta_w - (delta_w // 2)
color = [255, 255, 255]
return cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
# noinspection PyUnresolvedReferences
def smart_resize(img, size):
# Assumes the image has already gone through make_square
if img.shape[0] > size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
elif img.shape[0] < size:
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
else: # just do nothing
pass
return img
class WaifuDiffusionInterrogator:
def __init__(
self,
repo='SmilingWolf/wd-v1-4-vit-tagger',
model_path='model.onnx',
tags_path='selected_tags.csv',
mode: str = "auto"
) -> None:
self.__repo = repo
self.__model_path = model_path
self.__tags_path = tags_path
self._provider_mode = mode
self.__initialized = False
self._model, self._tags = None, None
def _init(self) -> None:
if self.__initialized:
return
model_path = hf_hub_download(self.__repo, filename=self.__model_path)
tags_path = hf_hub_download(self.__repo, filename=self.__tags_path)
self._model = InferenceSession(str(model_path))
self._tags = pd.read_csv(tags_path)
self.__initialized = True
def _calculation(self, image: Image.Image) -> pd.DataFrame:
# print(image) todo: figure out what to do if URL
self._init()
# code for converting the image and running the model is taken from the link below
# thanks, SmilingWolf!
# https://huggingface.co/spaces/SmilingWolf/wd-v1-4-tags/blob/main/app.py
# convert an image to fit the model
_, height, _, _ = self._model.get_inputs()[0].shape
# alpha to white
print(image)
image = image.convert('RGBA')
new_image = Image.new('RGBA', image.size, 'WHITE')
new_image.paste(image, mask=image)
image = new_image.convert('RGB')
image = np.asarray(image)
# PIL RGB to OpenCV BGR
image = image[:, :, ::-1]
image = make_square(image, height)
image = smart_resize(image, height)
image = image.astype(np.float32)
image = np.expand_dims(image, 0)
# evaluate model
input_name = self._model.get_inputs()[0].name
label_name = self._model.get_outputs()[0].name
confidence = self._model.run([label_name], {input_name: image})[0]
full_tags = self._tags[['name', 'category']].copy()
full_tags['confidence'] = confidence[0]
return full_tags
def interrogate(self, image: Image) -> Tuple[Dict[str, float], Dict[str, float]]:
full_tags = self._calculation(image)
# first 4 items are for rating (general, sensitive, questionable, explicit)
ratings = dict(full_tags[full_tags['category'] == 9][['name', 'confidence']].values)
# rest are regular tags
tags = dict(full_tags[full_tags['category'] != 9][['name', 'confidence']].values)
return ratings, tags
WAIFU_MODELS: Mapping[str, WaifuDiffusionInterrogator] = {
'chen-vit': WaifuDiffusionInterrogator(),
'chen-convnext': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-convnext-tagger'
),
'chen-convnext2': WaifuDiffusionInterrogator(
repo="SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
),
'chen-swinv2': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-swinv2-tagger-v2'
),
'chen-moat2': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-v1-4-moat-tagger-v2'
),
'chen-convnext3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-convnext-tagger-v3'
),
'chen-vit3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-vit-tagger-v3'
),
'chen-swinv3': WaifuDiffusionInterrogator(
repo='SmilingWolf/wd-swinv2-tagger-v3'
),
}
RE_SPECIAL = re.compile(r'([\\()])')
def image_to_wd14_tags(image: Image.Image, model_name: str, threshold: float,
use_spaces: bool, use_escape: bool, include_ranks=False, score_descend=True) \
-> Tuple[Mapping[str, float], str, Mapping[str, float]]:
model = WAIFU_MODELS[model_name]
ratings, tags = model.interrogate(image)
filtered_tags = {
tag: score for tag, score in tags.items()
if score >= threshold
}
text_items = []
tags_pairs = filtered_tags.items()
if score_descend:
tags_pairs = sorted(tags_pairs, key=lambda x: (-x[1], x[0]))
for tag, score in tags_pairs:
tag_outformat = tag
if use_spaces:
tag_outformat = tag_outformat.replace('_', '-')
else:
tag_outformat = tag_outformat.replace(' ', ', ')
tag_outformat = tag_outformat.replace('_', ' ')
if use_escape:
tag_outformat = re.sub(RE_SPECIAL, r'\\\1', tag_outformat)
if include_ranks:
tag_outformat = f"({tag_outformat}:{score:.3f})"
text_items.append(tag_outformat)
if use_spaces:
output_text = ' '.join(text_items)
else:
output_text = ', '.join(text_items)
return ratings, output_text, filtered_tags
#获取图片调用image_to_wd14_tags函数获取返回 ->"ratings, output_text, filtered_tags"
@app.post("/getOriginalMangaList")
def getOriginalMangaList(image: UploadFile = File(...)):
print("收到请求")
img = image.file.read()
image_data = Image.open(io.BytesIO(img)).convert("L").convert("RGB")
return image_to_wd14_tags(image_data, 'chen-moat2', 0.5, True, True)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)