RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from collections import OrderedDict
import mmcv
import numpy as np
import torch
import torch.distributed as dist
from mmcv.runner import BaseModule, auto_fp16
from mmdet.core.visualization import imshow_det_bboxes
class BaseDetector(BaseModule, metaclass=ABCMeta):
"""Base class for detectors."""
def __init__(self, init_cfg=None):
super(BaseDetector, self).__init__(init_cfg)
self.fp16_enabled = False
@property
def with_neck(self):
"""bool: whether the detector has a neck"""
return hasattr(self, 'neck') and self.neck is not None
# TODO: these properties need to be carefully handled
# for both single stage & two stage detectors
@property
def with_shared_head(self):
"""bool: whether the detector has a shared head in the RoI Head"""
return hasattr(self, 'roi_head') and self.roi_head.with_shared_head
@property
def with_bbox(self):
"""bool: whether the detector has a bbox head"""
return ((hasattr(self, 'roi_head') and self.roi_head.with_bbox)
or (hasattr(self, 'bbox_head') and self.bbox_head is not None))
@property
def with_mask(self):
"""bool: whether the detector has a mask head"""
return ((hasattr(self, 'roi_head') and self.roi_head.with_mask)
or (hasattr(self, 'mask_head') and self.mask_head is not None))
@abstractmethod
def extract_feat(self, imgs):
"""Extract features from images."""
pass
def extract_feats(self, imgs):
"""Extract features from multiple images.
Args:
imgs (list[torch.Tensor]): A list of images. The images are
augmented from the same image but in different ways.
Returns:
list[torch.Tensor]: Features of different images
"""
assert isinstance(imgs, list)
return [self.extract_feat(img) for img in imgs]
def forward_train(self, imgs, img_metas, **kwargs):
"""
Args:
img (Tensor): of shape (N, C, H, W) encoding input images.
Typically these should be mean centered and std scaled.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys, see
:class:`mmdet.datasets.pipelines.Collect`.
kwargs (keyword arguments): Specific to concrete implementation.
"""
# NOTE the batched image size information may be useful, e.g.
# in DETR, this is needed for the construction of masks, which is
# then used for the transformer_head.
batch_input_shape = tuple(imgs[0].size()[-2:])
for img_meta in img_metas:
img_meta['batch_input_shape'] = batch_input_shape
async def async_simple_test(self, img, img_metas, **kwargs):
raise NotImplementedError
@abstractmethod
def simple_test(self, img, img_metas, **kwargs):
pass
@abstractmethod
def aug_test(self, imgs, img_metas, **kwargs):
"""Test function with test time augmentation."""
pass
async def aforward_test(self, *, img, img_metas, **kwargs):
for var, name in [(img, 'img'), (img_metas, 'img_metas')]:
if not isinstance(var, list):
raise TypeError(f'{name} must be a list, but got {type(var)}')
num_augs = len(img)
if num_augs != len(img_metas):
raise ValueError(f'num of augmentations ({len(img)}) '
f'!= num of image metas ({len(img_metas)})')
# TODO: remove the restriction of samples_per_gpu == 1 when prepared
samples_per_gpu = img[0].size(0)
assert samples_per_gpu == 1
if num_augs == 1:
return await self.async_simple_test(img[0], img_metas[0], **kwargs)
else:
raise NotImplementedError
def forward_test(self, imgs, img_metas, **kwargs):
"""
Args:
imgs (List[Tensor]): the outer list indicates test-time
augmentations and inner Tensor should have a shape NxCxHxW,
which contains all images in the batch.
img_metas (List[List[dict]]): the outer list indicates test-time
augs (multiscale, flip, etc.) and the inner list indicates
images in a batch.
"""
for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
if not isinstance(var, list):
raise TypeError(f'{name} must be a list, but got {type(var)}')
num_augs = len(imgs)
if num_augs != len(img_metas):
raise ValueError(f'num of augmentations ({len(imgs)}) '
f'!= num of image meta ({len(img_metas)})')
# NOTE the batched image size information may be useful, e.g.
# in DETR, this is needed for the construction of masks, which is
# then used for the transformer_head.
for img, img_meta in zip(imgs, img_metas):
batch_size = len(img_meta)
for img_id in range(batch_size):
img_meta[img_id]['batch_input_shape'] = tuple(img.size()[-2:])
if num_augs == 1:
# proposals (List[List[Tensor]]): the outer list indicates
# test-time augs (multiscale, flip, etc.) and the inner list
# indicates images in a batch.
# The Tensor should have a shape Px4, where P is the number of
# proposals.
if 'proposals' in kwargs:
kwargs['proposals'] = kwargs['proposals'][0]
return self.simple_test(imgs[0], img_metas[0], **kwargs)
else:
assert imgs[0].size(0) == 1, 'aug test does not support ' \
'inference with batch size ' \
f'{imgs[0].size(0)}'
# TODO: support test augmentation for predefined proposals
assert 'proposals' not in kwargs
return self.aug_test(imgs, img_metas, **kwargs)
@auto_fp16(apply_to=('img', ))
def forward(self, img, img_metas, return_loss=True, **kwargs):
"""Calls either :func:`forward_train` or :func:`forward_test` depending
on whether ``return_loss`` is ``True``.
Note this setting will change the expected inputs. When
``return_loss=True``, img and img_meta are single-nested (i.e. Tensor
and List[dict]), and when ``resturn_loss=False``, img and img_meta
should be double nested (i.e. List[Tensor], List[List[dict]]), with
the outer list indicating test time augmentations.
"""
if torch.onnx.is_in_onnx_export():
assert len(img_metas) == 1
return self.onnx_export(img[0], img_metas[0])
if return_loss:
return self.forward_train(img, img_metas, **kwargs)
else:
return self.forward_test(img, img_metas, **kwargs)
def _parse_losses(self, losses):
"""Parse the raw outputs (losses) of the network.
Args:
losses (dict): Raw output of the network, which usually contain
losses and other necessary information.
Returns:
tuple[Tensor, dict]: (loss, log_vars), loss is the loss tensor \
which may be a weighted sum of all losses, log_vars contains \
all the variables to be sent to the logger.
"""
log_vars = OrderedDict()
for loss_name, loss_value in losses.items():
if isinstance(loss_value, torch.Tensor):
log_vars[loss_name] = loss_value.mean()
elif isinstance(loss_value, list):
log_vars[loss_name] = sum(_loss.mean() for _loss in loss_value)
else:
raise TypeError(
f'{loss_name} is not a tensor or list of tensors')
loss = sum(_value for _key, _value in log_vars.items()
if 'loss' in _key)
# If the loss_vars has different length, GPUs will wait infinitely
if dist.is_available() and dist.is_initialized():
log_var_length = torch.tensor(len(log_vars), device=loss.device)
dist.all_reduce(log_var_length)
message = (f'rank {dist.get_rank()}' +
f' len(log_vars): {len(log_vars)}' + ' keys: ' +
','.join(log_vars.keys()))
assert log_var_length == len(log_vars) * dist.get_world_size(), \
'loss log variables are different across GPUs!\n' + message
log_vars['loss'] = loss
for loss_name, loss_value in log_vars.items():
# reduce loss when distributed training
if dist.is_available() and dist.is_initialized():
loss_value = loss_value.data.clone()
dist.all_reduce(loss_value.div_(dist.get_world_size()))
log_vars[loss_name] = loss_value.item()
return loss, log_vars
def train_step(self, data, optimizer):
"""The iteration step during training.
This method defines an iteration step during training, except for the
back propagation and optimizer updating, which are done in an optimizer
hook. Note that in some complicated cases or models, the whole process
including back propagation and optimizer updating is also defined in
this method, such as GAN.
Args:
data (dict): The output of dataloader.
optimizer (:obj:`torch.optim.Optimizer` | dict): The optimizer of
runner is passed to ``train_step()``. This argument is unused
and reserved.
Returns:
dict: It should contain at least 3 keys: ``loss``, ``log_vars``, \
``num_samples``.
- ``loss`` is a tensor for back propagation, which can be a
weighted sum of multiple losses.
- ``log_vars`` contains all the variables to be sent to the
logger.
- ``num_samples`` indicates the batch size (when the model is
DDP, it means the batch size on each GPU), which is used for
averaging the logs.
"""
losses = self(**data)
loss, log_vars = self._parse_losses(losses)
outputs = dict(
loss=loss, log_vars=log_vars, num_samples=len(data['img_metas']))
return outputs
def val_step(self, data, optimizer=None):
"""The iteration step during validation.
This method shares the same signature as :func:`train_step`, but used
during val epochs. Note that the evaluation after training epochs is
not implemented with this method, but an evaluation hook.
"""
losses = self(**data)
loss, log_vars = self._parse_losses(losses)
log_vars_ = dict()
for loss_name, loss_value in log_vars.items():
k = loss_name + '_val'
log_vars_[k] = loss_value
outputs = dict(
loss=loss, log_vars=log_vars_, num_samples=len(data['img_metas']))
return outputs
def show_result(self,
img,
result,
score_thr=0.3,
bbox_color=(72, 101, 241),
text_color=(72, 101, 241),
mask_color=None,
thickness=2,
font_size=13,
win_name='',
show=False,
wait_time=0,
out_file=None):
"""Draw `result` over `img`.
Args:
img (str or Tensor): The image to be displayed.
result (Tensor or tuple): The results to draw over `img`
bbox_result or (bbox_result, segm_result).
score_thr (float, optional): Minimum score of bboxes to be shown.
Default: 0.3.
bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
The tuple of color should be in BGR order. Default: 'green'
text_color (str or tuple(int) or :obj:`Color`):Color of texts.
The tuple of color should be in BGR order. Default: 'green'
mask_color (None or str or tuple(int) or :obj:`Color`):
Color of masks. The tuple of color should be in BGR order.
Default: None
thickness (int): Thickness of lines. Default: 2
font_size (int): Font size of texts. Default: 13
win_name (str): The window name. Default: ''
wait_time (float): Value of waitKey param.
Default: 0.
show (bool): Whether to show the image.
Default: False.
out_file (str or None): The filename to write the image.
Default: None.
Returns:
img (Tensor): Only if not `show` or `out_file`
"""
img = mmcv.imread(img)
img = img.copy()
if isinstance(result, tuple):
bbox_result, segm_result = result
if isinstance(segm_result, tuple):
segm_result = segm_result[0] # ms rcnn
else:
bbox_result, segm_result = result, None
bboxes = np.vstack(bbox_result)
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
# draw segmentation masks
segms = None
if segm_result is not None and len(labels) > 0: # non empty
segms = mmcv.concat_list(segm_result)
if isinstance(segms[0], torch.Tensor):
segms = torch.stack(segms, dim=0).detach().cpu().numpy()
else:
segms = np.stack(segms, axis=0)
# if out_file specified, do not show image in window
if out_file is not None:
show = False
# draw bounding boxes
img = imshow_det_bboxes(
img,
bboxes,
labels,
segms,
class_names=self.CLASSES,
score_thr=score_thr,
bbox_color=bbox_color,
text_color=text_color,
mask_color=mask_color,
thickness=thickness,
font_size=font_size,
win_name=win_name,
show=show,
wait_time=wait_time,
out_file=out_file)
if not (show or out_file):
return img
def onnx_export(self, img, img_metas):
raise NotImplementedError(f'{self.__class__.__name__} does '
f'not support ONNX EXPORT')