Spaces:
Runtime error
Runtime error
File size: 12,116 Bytes
51f6859 0702ffc c08f9fa 0702ffc c08f9fa 0702ffc c08f9fa 0702ffc 51f6859 0702ffc 51f6859 0702ffc 51f6859 fa4d18a 0702ffc 51f6859 0702ffc 51f6859 0702ffc 51f6859 a6190ef 51f6859 7bbb0c6 51f6859 7bbb0c6 0702ffc 51f6859 e8dd899 51f6859 0702ffc 51f6859 0702ffc 51f6859 0702ffc d8c32ac 0702ffc 51f6859 a6190ef 51f6859 42fb25d 51f6859 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
SPACE_ID = os.getenv('SPACE_ID')
# if SPACE_ID is not None:
# # running on huggingface space
# os.system(r'mkdir ckpt')
# os.system(
# r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth -o ckpt/sam_vit_b_01ec64.pth')
# os.system(
# r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth -o ckpt/sam_vit_l_0b3195.pth')
# os.system(
# r'python -m wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth -o ckpt/sam_vit_h_4b8939.pth')
# os.system(
# r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1'
# r'/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/r50_hdetr.pth')
# os.system(
# r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1'
# r'/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/swin_t_hdetr.pth')
# os.system(
# r'python -m wget https://github.com/HDETR/H-Deformable-DETR/releases/download/v0.1/decay0.05_drop_path0'
# r'.5_swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth -o ckpt/swin_l_hdetr.pth')
# os.system(r'python -m wget https://projects4jw.blob.core.windows.net/focalnet/release/detection'
# r'/focalnet_large_fl4_o365_finetuned_on_coco.pth -o ckpt/focalnet_l_dino.pth')
# os.system(r'python tools/convert_ckpt.py ckpt/r50_hdetr.pth ckpt/r50_hdetr.pth')
# os.system(r'python tools/convert_ckpt.py ckpt/swin_t_hdetr.pth ckpt/swin_t_hdetr.pth')
# os.system(r'python tools/convert_ckpt.py ckpt/swin_l_hdetr.pth ckpt/swin_l_hdetr.pth')
# os.system(r'python tools/convert_ckpt.py ckpt/focalnet_l_dino.pth ckpt/focalnet_l_dino.pth')
import warnings
from collections import OrderedDict
from pathlib import Path
import gradio as gr
import numpy as np
import torch
import mmcv
from mmcv import Config
from mmcv.ops import RoIPool
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from mmcv.utils import IS_CUDA_AVAILABLE, IS_MLU_AVAILABLE
from mmdet.core import get_classes
from mmdet.datasets import (CocoDataset, replace_ImageToTensor)
from mmdet.datasets.pipelines import Compose
from mmdet.models import build_detector
from mmdet.utils import (compat_cfg, replace_cfg_vals, setup_multi_processes,
update_data_root)
config_dict = OrderedDict([('r50-hdetr_sam-vit-b', 'projects/configs/hdetr/r50-hdetr_sam-vit-b.py'),
('r50-hdetr_sam-vit-l', 'projects/configs/hdetr/r50-hdetr_sam-vit-l.py'),
('swin-t-hdetr_sam-vit-b', 'projects/configs/hdetr/swin-t-hdetr_sam-vit-b.py'),
('swin-t-hdetr_sam-vit-l', 'projects/configs/hdetr/swin-t-hdetr_sam-vit-l.py'),
('swin-l-hdetr_sam-vit-b', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-b.py'),
('swin-l-hdetr_sam-vit-l', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py'),
# ('swin-l-hdetr_sam-vit-h', 'projects/configs/hdetr/swin-l-hdetr_sam-vit-l.py'),
('focalnet-l-dino_sam-vit-b', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-b.py'),
# ('focalnet-l-dino_sam-vit-l', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-l.py'),
# ('focalnet-l-dino_sam-vit-h', 'projects/configs/focalnet_dino/focalnet-l-dino_sam-vit-h.py')
])
def init_demo_detector(config, checkpoint=None, device='cuda:0', cfg_options=None):
"""Initialize a detector from config file.
Args:
config (str, :obj:`Path`, or :obj:`mmcv.Config`): Config file path,
:obj:`Path`, or the config object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
cfg_options (dict): Options to override some settings in the used
config.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, (str, Path)):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
if cfg_options is not None:
config.merge_from_dict(cfg_options)
if 'pretrained' in config.model:
config.model.pretrained = None
elif (config.model.get('backbone', None) is not None
and 'init_cfg' in config.model.backbone):
config.model.backbone.init_cfg = None
config.model.train_cfg = None
model = build_detector(config.model, test_cfg=config.get('test_cfg'))
if checkpoint is not None:
checkpoint = load_checkpoint(model, checkpoint, map_location='cpu')
if 'CLASSES' in checkpoint.get('meta', {}):
model.CLASSES = checkpoint['meta']['CLASSES']
else:
warnings.simplefilter('once')
warnings.warn('Class names are not saved in the checkpoint\'s '
'meta data, use COCO classes by default.')
model.CLASSES = get_classes('coco')
model.cfg = config # save the config in the model for convenience
model.to(device)
model.eval()
if device == 'npu':
from mmcv.device.npu import NPUDataParallel
model = NPUDataParallel(model)
model.cfg = config
return model
def inference_demo_detector(model, imgs):
"""Inference image(s) with the detector.
Args:
model (nn.Module): The loaded detector.
imgs (str/ndarray or list[str/ndarray] or tuple[str/ndarray]):
Either image files or loaded images.
Returns:
If imgs is a list or tuple, the same length list type results
will be returned, otherwise return the detection results directly.
"""
ori_img = imgs
if isinstance(imgs, (list, tuple)):
is_batch = True
else:
imgs = [imgs]
is_batch = False
cfg = model.cfg
device = next(model.parameters()).device # model device
if isinstance(imgs[0], np.ndarray):
cfg = cfg.copy()
# set loading pipeline type
cfg.data.test.pipeline[0].type = 'LoadImageFromWebcam'
cfg.data.test.pipeline = replace_ImageToTensor(cfg.data.test.pipeline)
test_pipeline = Compose(cfg.data.test.pipeline)
datas = []
for img in imgs:
# prepare data
if isinstance(img, np.ndarray):
# directly add img
data = dict(img=img)
else:
# add information into dict
data = dict(img_info=dict(filename=img), img_prefix=None)
# build the data pipeline
data = test_pipeline(data)
datas.append(data)
data = collate(datas, samples_per_gpu=len(imgs))
# just get the actual data from DataContainer
data['img_metas'] = [img_metas.data[0] for img_metas in data['img_metas']]
data['img'] = [img.data[0] for img in data['img']]
if next(model.parameters()).is_cuda:
# scatter to specified GPU
data = scatter(data, [device])[0]
else:
for m in model.modules():
assert not isinstance(
m, RoIPool
), 'CPU inference with RoIPool is not supported currently.'
# forward the model
with torch.no_grad():
results = model(return_loss=False, rescale=True, **data, ori_img=ori_img)
if not is_batch:
return results[0]
else:
return results
def inference(img, config):
if img is None:
return None
print(f"config: {config}")
config = config_dict[config]
cfg = Config.fromfile(config)
# replace the ${key} with the value of cfg.key
cfg = replace_cfg_vals(cfg)
# update data root according to MMDET_DATASETS
update_data_root(cfg)
cfg = compat_cfg(cfg)
# set multi-process settings
setup_multi_processes(cfg)
# import modules from plguin/xx, registry will be updated
if hasattr(cfg, 'plugin'):
if cfg.plugin:
import importlib
if hasattr(cfg, 'plugin_dir'):
plugin_dir = cfg.plugin_dir
_module_dir = os.path.dirname(plugin_dir)
_module_dir = _module_dir.split('/')
_module_path = _module_dir[0]
for m in _module_dir[1:]:
_module_path = _module_path + '.' + m
print(_module_path)
plg_lib = importlib.import_module(_module_path)
else:
# import dir is the dirpath for the config file
_module_dir = os.path.dirname(config)
_module_dir = _module_dir.split('/')
_module_path = _module_dir[0]
for m in _module_dir[1:]:
_module_path = _module_path + '.' + m
# print(_module_path)
plg_lib = importlib.import_module(_module_path)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
if IS_CUDA_AVAILABLE or IS_MLU_AVAILABLE:
device = "cuda"
else:
device = "cpu"
model = init_demo_detector(cfg, None, device=device)
model.CLASSES = CocoDataset.CLASSES
results = inference_demo_detector(model, img)
visualize = model.show_result(
img,
results,
bbox_color=CocoDataset.PALETTE,
text_color=CocoDataset.PALETTE,
mask_color=CocoDataset.PALETTE,
show=False,
out_file=None,
score_thr=0.3
)
del model
return visualize
description = """
# <center>Prompt Segment Anything (zero-shot instance segmentation demo)</center>
Github link: [Link](https://github.com/RockeyCoss/Prompt-Segment-Anything)
You can select the model you want to use from the "Model" dropdown menu and click "Submit" to segment the image you uploaded to the "Input Image" box.
"""
if SPACE_ID is not None:
description += f'\n<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
def main():
with gr.Blocks() as demo:
gr.Markdown(description)
with gr.Column():
with gr.Row():
with gr.Column():
input_img = gr.Image(type="numpy", label="Input Image")
model_type = gr.Dropdown(choices=list(config_dict.keys()),
value=list(config_dict.keys())[0],
label='Model',
multiselect=False)
with gr.Row():
clear_btn = gr.Button(value="Clear")
submit_btn = gr.Button(value="Submit")
output_img = gr.Image(type="numpy", label="Output")
gr.Examples(
examples=[["./assets/img1.jpg", "r50-hdetr_sam-vit-b"],
["./assets/img2.jpg", "r50-hdetr_sam-vit-b"],
["./assets/img3.jpg", "r50-hdetr_sam-vit-b"],
["./assets/img4.jpg", "r50-hdetr_sam-vit-b"]],
inputs=[input_img, model_type],
outputs=output_img,
fn=inference
)
submit_btn.click(inference,
inputs=[input_img, model_type],
outputs=output_img)
clear_btn.click(lambda: [None, None], None, [input_img, output_img], queue=False)
demo.queue()
demo.launch()
if __name__ == '__main__':
main()
|