from unittest import skip from gruut import sentences import torch importer = torch.package.PackageImporter("ukrainian-accentor/accentor-lite.pt") accentor = importer.load_pickle("uk-accentor", "model") replace_accents = importer.load_pickle("uk-accentor", "replace_accents") # Using GPU # accentor.cuda() # Back to CPU # accentor.cpu() alphabet = "абгґдеєжзиіїйклмнопрстуфхцчшщьюя" def accent_word(word): with torch.no_grad(): stressed_words = accentor.predict([word], mode='stress') plused_words = [replace_accents(x) for x in stressed_words] return plused_words[0] def sentence_to_stress(sentence): words = sentence.split() words = sum([[word, " "] for word in words], start=[]) new_list = [] for word in words: first_word_sep = list(map(lambda letter: letter in alphabet, word.lower())) if all(first_word_sep): new_list.append(word) else: current_index = 0 past_index = 0 for letter in first_word_sep: if letter == False: new_list.append(word[past_index:current_index]) new_list.append(word[current_index]) past_index = current_index + 1 current_index += 1 new_list.append(word[past_index:current_index]) #print(list(filter(lambda x: len(x) > 0, new_list))) for word_index in range(0, len(new_list)): element = new_list[word_index] first_word_sep = list(map(lambda letter: letter in alphabet, element.lower())) if not all(first_word_sep) or len(element) == 0: continue else: new_list[word_index] = accent_word(new_list[word_index]) return "".join(new_list) if __name__ == "__main__": sentence = "Кам'янець-Подільський - місто в Хмельницькій області України, центр Кам'янець-Подільської міської об'єднаної територіальної громади і Кам'янець-Подільського району." print(sentence_to_stress(sentence)) #test_words1 = ["словотворення", "архаїчний", "програма", "а-ля-фуршет"] stressed_words = accentor.predict(["привіт"], mode='stress') plused_words = [replace_accents(x) for x in stressed_words] print('With stress:', stressed_words) print('With pluses:', plused_words)