Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Facebook, Inc. and its affiliates. | |
import torch | |
import torch.nn as nn | |
class DeepLabCE(nn.Module): | |
""" | |
Hard pixel mining with cross entropy loss, for semantic segmentation. | |
This is used in TensorFlow DeepLab frameworks. | |
Paper: DeeperLab: Single-Shot Image Parser | |
Reference: https://github.com/tensorflow/models/blob/bd488858d610e44df69da6f89277e9de8a03722c/research/deeplab/utils/train_utils.py#L33 # noqa | |
Arguments: | |
ignore_label: Integer, label to ignore. | |
top_k_percent_pixels: Float, the value lies in [0.0, 1.0]. When its | |
value < 1.0, only compute the loss for the top k percent pixels | |
(e.g., the top 20% pixels). This is useful for hard pixel mining. | |
weight: Tensor, a manual rescaling weight given to each class. | |
""" | |
def __init__(self, ignore_label=-1, top_k_percent_pixels=1.0, weight=None): | |
super(DeepLabCE, self).__init__() | |
self.top_k_percent_pixels = top_k_percent_pixels | |
self.ignore_label = ignore_label | |
self.criterion = nn.CrossEntropyLoss( | |
weight=weight, ignore_index=ignore_label, reduction="none" | |
) | |
def forward(self, logits, labels, weights=None): | |
if weights is None: | |
pixel_losses = self.criterion(logits, labels).contiguous().view(-1) | |
else: | |
# Apply per-pixel loss weights. | |
pixel_losses = self.criterion(logits, labels) * weights | |
pixel_losses = pixel_losses.contiguous().view(-1) | |
if self.top_k_percent_pixels == 1.0: | |
return pixel_losses.mean() | |
top_k_pixels = int(self.top_k_percent_pixels * pixel_losses.numel()) | |
pixel_losses, _ = torch.topk(pixel_losses, top_k_pixels) | |
return pixel_losses.mean() | |