rlawjdghek's picture
detectron2
a9a0ec2
raw
history blame
7.27 kB
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import contextlib
import io
import numpy as np
import unittest
from collections import defaultdict
import torch
import tqdm
from fvcore.common.benchmark import benchmark
from pycocotools.coco import COCO
from tabulate import tabulate
from torch.nn import functional as F
from detectron2.data import MetadataCatalog
from detectron2.layers.mask_ops import (
pad_masks,
paste_mask_in_image_old,
paste_masks_in_image,
scale_boxes,
)
from detectron2.structures import BitMasks, Boxes, BoxMode, PolygonMasks
from detectron2.structures.masks import polygons_to_bitmask
from detectron2.utils.file_io import PathManager
from detectron2.utils.testing import random_boxes
def iou_between_full_image_bit_masks(a, b):
intersect = (a & b).sum()
union = (a | b).sum()
return intersect / union
def rasterize_polygons_with_grid_sample(full_image_bit_mask, box, mask_size, threshold=0.5):
x0, y0, x1, y1 = box[0], box[1], box[2], box[3]
img_h, img_w = full_image_bit_mask.shape
mask_y = np.arange(0.0, mask_size) + 0.5 # mask y sample coords in [0.5, mask_size - 0.5]
mask_x = np.arange(0.0, mask_size) + 0.5 # mask x sample coords in [0.5, mask_size - 0.5]
mask_y = mask_y / mask_size * (y1 - y0) + y0
mask_x = mask_x / mask_size * (x1 - x0) + x0
mask_x = (mask_x - 0.5) / (img_w - 1) * 2 + -1
mask_y = (mask_y - 0.5) / (img_h - 1) * 2 + -1
gy, gx = torch.meshgrid(torch.from_numpy(mask_y), torch.from_numpy(mask_x))
ind = torch.stack([gx, gy], dim=-1).to(dtype=torch.float32)
full_image_bit_mask = torch.from_numpy(full_image_bit_mask)
mask = F.grid_sample(
full_image_bit_mask[None, None, :, :].to(dtype=torch.float32),
ind[None, :, :, :],
align_corners=True,
)
return mask[0, 0] >= threshold
class TestMaskCropPaste(unittest.TestCase):
def setUp(self):
json_file = MetadataCatalog.get("coco_2017_val_100").json_file
if not PathManager.isfile(json_file):
raise unittest.SkipTest("{} not found".format(json_file))
with contextlib.redirect_stdout(io.StringIO()):
json_file = PathManager.get_local_path(json_file)
self.coco = COCO(json_file)
def test_crop_paste_consistency(self):
"""
rasterize_polygons_within_box (used in training)
and
paste_masks_in_image (used in inference)
should be inverse operations to each other.
This function runs several implementation of the above two operations and prints
the reconstruction error.
"""
anns = self.coco.loadAnns(self.coco.getAnnIds(iscrowd=False)) # avoid crowd annotations
selected_anns = anns[:100]
ious = []
for ann in tqdm.tqdm(selected_anns):
results = self.process_annotation(ann)
ious.append([k[2] for k in results])
ious = np.array(ious)
mean_ious = ious.mean(axis=0)
table = []
res_dic = defaultdict(dict)
for row, iou in zip(results, mean_ious):
table.append((row[0], row[1], iou))
res_dic[row[0]][row[1]] = iou
print(tabulate(table, headers=["rasterize", "paste", "iou"], tablefmt="simple"))
# assert that the reconstruction is good:
self.assertTrue(res_dic["polygon"]["aligned"] > 0.94)
self.assertTrue(res_dic["roialign"]["aligned"] > 0.95)
def process_annotation(self, ann, mask_side_len=28):
# Parse annotation data
img_info = self.coco.loadImgs(ids=[ann["image_id"]])[0]
height, width = img_info["height"], img_info["width"]
gt_polygons = [np.array(p, dtype=np.float64) for p in ann["segmentation"]]
gt_bbox = BoxMode.convert(ann["bbox"], BoxMode.XYWH_ABS, BoxMode.XYXY_ABS)
gt_bit_mask = polygons_to_bitmask(gt_polygons, height, width)
# Run rasterize ..
torch_gt_bbox = torch.tensor(gt_bbox).to(dtype=torch.float32).reshape(-1, 4)
box_bitmasks = {
"polygon": PolygonMasks([gt_polygons]).crop_and_resize(torch_gt_bbox, mask_side_len)[0],
"gridsample": rasterize_polygons_with_grid_sample(gt_bit_mask, gt_bbox, mask_side_len),
"roialign": BitMasks(torch.from_numpy(gt_bit_mask[None, :, :])).crop_and_resize(
torch_gt_bbox, mask_side_len
)[0],
}
# Run paste ..
results = defaultdict(dict)
for k, box_bitmask in box_bitmasks.items():
padded_bitmask, scale = pad_masks(box_bitmask[None, :, :], 1)
scaled_boxes = scale_boxes(torch_gt_bbox, scale)
r = results[k]
r["old"] = paste_mask_in_image_old(
padded_bitmask[0], scaled_boxes[0], height, width, threshold=0.5
)
r["aligned"] = paste_masks_in_image(
box_bitmask[None, :, :], Boxes(torch_gt_bbox), (height, width)
)[0]
table = []
for rasterize_method, r in results.items():
for paste_method, mask in r.items():
mask = np.asarray(mask)
iou = iou_between_full_image_bit_masks(gt_bit_mask.astype("uint8"), mask)
table.append((rasterize_method, paste_method, iou))
return table
def test_polygon_area(self):
# Draw polygon boxes
for d in [5.0, 10.0, 1000.0]:
polygon = PolygonMasks([[[0, 0, 0, d, d, d, d, 0]]])
area = polygon.area()[0]
target = d**2
self.assertEqual(area, target)
# Draw polygon triangles
for d in [5.0, 10.0, 1000.0]:
polygon = PolygonMasks([[[0, 0, 0, d, d, d]]])
area = polygon.area()[0]
target = d**2 / 2
self.assertEqual(area, target)
def test_paste_mask_scriptable(self):
scripted_f = torch.jit.script(paste_masks_in_image)
N = 10
masks = torch.rand(N, 28, 28)
boxes = Boxes(random_boxes(N, 100)).tensor
image_shape = (150, 150)
out = paste_masks_in_image(masks, boxes, image_shape)
scripted_out = scripted_f(masks, boxes, image_shape)
self.assertTrue(torch.equal(out, scripted_out))
def benchmark_paste():
S = 800
H, W = image_shape = (S, S)
N = 64
torch.manual_seed(42)
masks = torch.rand(N, 28, 28)
center = torch.rand(N, 2) * 600 + 100
wh = torch.clamp(torch.randn(N, 2) * 40 + 200, min=50)
x0y0 = torch.clamp(center - wh * 0.5, min=0.0)
x1y1 = torch.clamp(center + wh * 0.5, max=S)
boxes = Boxes(torch.cat([x0y0, x1y1], axis=1))
def func(device, n=3):
m = masks.to(device=device)
b = boxes.to(device=device)
def bench():
for _ in range(n):
paste_masks_in_image(m, b, image_shape)
if device.type == "cuda":
torch.cuda.synchronize()
return bench
specs = [{"device": torch.device("cpu"), "n": 3}]
if torch.cuda.is_available():
specs.append({"device": torch.device("cuda"), "n": 3})
benchmark(func, "paste_masks", specs, num_iters=10, warmup_iters=2)
if __name__ == "__main__":
benchmark_paste()
unittest.main()