Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,687 Bytes
a9a0ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Copyright (c) Facebook, Inc. and its affiliates.
import io
import unittest
import warnings
import torch
from torch.hub import _check_module_exists
from detectron2 import model_zoo
from detectron2.config import get_cfg
from detectron2.export import STABLE_ONNX_OPSET_VERSION
from detectron2.export.flatten import TracingAdapter
from detectron2.export.torchscript_patch import patch_builtin_len
from detectron2.layers import ShapeSpec
from detectron2.modeling import build_model
from detectron2.modeling.roi_heads import KRCNNConvDeconvUpsampleHead
from detectron2.structures import Boxes, Instances
from detectron2.utils.testing import (
_pytorch1111_symbolic_opset9_repeat_interleave,
_pytorch1111_symbolic_opset9_to,
get_sample_coco_image,
has_dynamic_axes,
random_boxes,
register_custom_op_onnx_export,
skipIfOnCPUCI,
skipIfUnsupportedMinOpsetVersion,
skipIfUnsupportedMinTorchVersion,
unregister_custom_op_onnx_export,
)
@unittest.skipIf(not _check_module_exists("onnx"), "ONNX not installed.")
@skipIfUnsupportedMinTorchVersion("1.10")
class TestONNXTracingExport(unittest.TestCase):
opset_version = STABLE_ONNX_OPSET_VERSION
def testMaskRCNNFPN(self):
def inference_func(model, images):
with warnings.catch_warnings(record=True):
inputs = [{"image": image} for image in images]
inst = model.inference(inputs, do_postprocess=False)[0]
return [{"instances": inst}]
self._test_model_zoo_from_config_path(
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func
)
@skipIfOnCPUCI
def testMaskRCNNC4(self):
def inference_func(model, image):
inputs = [{"image": image}]
return model.inference(inputs, do_postprocess=False)[0]
self._test_model_zoo_from_config_path(
"COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml", inference_func
)
@skipIfOnCPUCI
def testCascadeRCNN(self):
def inference_func(model, image):
inputs = [{"image": image}]
return model.inference(inputs, do_postprocess=False)[0]
self._test_model_zoo_from_config_path(
"Misc/cascade_mask_rcnn_R_50_FPN_3x.yaml", inference_func
)
def testRetinaNet(self):
def inference_func(model, image):
return model.forward([{"image": image}])[0]["instances"]
self._test_model_zoo_from_config_path(
"COCO-Detection/retinanet_R_50_FPN_3x.yaml", inference_func
)
@skipIfOnCPUCI
def testMaskRCNNFPN_batched(self):
def inference_func(model, image1, image2):
inputs = [{"image": image1}, {"image": image2}]
return model.inference(inputs, do_postprocess=False)
self._test_model_zoo_from_config_path(
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml", inference_func, batch=2
)
@skipIfUnsupportedMinOpsetVersion(16, STABLE_ONNX_OPSET_VERSION)
@skipIfUnsupportedMinTorchVersion("1.11.1")
def testMaskRCNNFPN_with_postproc(self):
def inference_func(model, image):
inputs = [{"image": image, "height": image.shape[1], "width": image.shape[2]}]
return model.inference(inputs, do_postprocess=True)[0]["instances"]
self._test_model_zoo_from_config_path(
"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml",
inference_func,
)
def testKeypointHead(self):
class M(torch.nn.Module):
def __init__(self):
super().__init__()
self.model = KRCNNConvDeconvUpsampleHead(
ShapeSpec(channels=4, height=14, width=14), num_keypoints=17, conv_dims=(4,)
)
def forward(self, x, predbox1, predbox2):
inst = [
Instances((100, 100), pred_boxes=Boxes(predbox1)),
Instances((100, 100), pred_boxes=Boxes(predbox2)),
]
ret = self.model(x, inst)
return tuple(x.pred_keypoints for x in ret)
model = M()
model.eval()
def gen_input(num1, num2):
feat = torch.randn((num1 + num2, 4, 14, 14))
box1 = random_boxes(num1)
box2 = random_boxes(num2)
return feat, box1, box2
with patch_builtin_len():
onnx_model = self._test_model(
model,
gen_input(1, 2),
input_names=["features", "pred_boxes", "pred_classes"],
output_names=["box1", "box2"],
dynamic_axes={
"features": {0: "batch", 1: "static_four", 2: "height", 3: "width"},
"pred_boxes": {0: "batch", 1: "static_four"},
"pred_classes": {0: "batch", 1: "static_four"},
"box1": {0: "num_instance", 1: "K", 2: "static_three"},
"box2": {0: "num_instance", 1: "K", 2: "static_three"},
},
)
# Although ONNX models are not executable by PyTorch to verify
# support of batches with different sizes, we can verify model's IR
# does not hard-code input and/or output shapes.
# TODO: Add tests with different batch sizes when detectron2's CI
# support ONNX Runtime backend.
assert has_dynamic_axes(onnx_model)
################################################################################
# Testcase internals - DO NOT add tests below this point
################################################################################
def setUp(self):
register_custom_op_onnx_export("::to", _pytorch1111_symbolic_opset9_to, 9, "1.11.1")
register_custom_op_onnx_export(
"::repeat_interleave",
_pytorch1111_symbolic_opset9_repeat_interleave,
9,
"1.11.1",
)
def tearDown(self):
unregister_custom_op_onnx_export("::to", 9, "1.11.1")
unregister_custom_op_onnx_export("::repeat_interleave", 9, "1.11.1")
def _test_model(
self,
model,
inputs,
inference_func=None,
opset_version=STABLE_ONNX_OPSET_VERSION,
save_onnx_graph_path=None,
**export_kwargs,
):
# Not imported in the beginning of file to prevent runtime errors
# for environments without ONNX.
# This testcase checks dependencies before running
import onnx # isort:skip
f = io.BytesIO()
adapter_model = TracingAdapter(model, inputs, inference_func)
adapter_model.eval()
with torch.no_grad():
try:
torch.onnx.enable_log()
except AttributeError:
# Older ONNX versions does not have this API
pass
torch.onnx.export(
adapter_model,
adapter_model.flattened_inputs,
f,
training=torch.onnx.TrainingMode.EVAL,
opset_version=opset_version,
verbose=True,
**export_kwargs,
)
onnx_model = onnx.load_from_string(f.getvalue())
assert onnx_model is not None
if save_onnx_graph_path:
onnx.save(onnx_model, save_onnx_graph_path)
return onnx_model
def _test_model_zoo_from_config_path(
self,
config_path,
inference_func,
batch=1,
opset_version=STABLE_ONNX_OPSET_VERSION,
save_onnx_graph_path=None,
**export_kwargs,
):
model = model_zoo.get(config_path, trained=True)
image = get_sample_coco_image()
inputs = tuple(image.clone() for _ in range(batch))
return self._test_model(
model, inputs, inference_func, opset_version, save_onnx_graph_path, **export_kwargs
)
def _test_model_from_config_path(
self,
config_path,
inference_func,
batch=1,
opset_version=STABLE_ONNX_OPSET_VERSION,
save_onnx_graph_path=None,
**export_kwargs,
):
from projects.PointRend import point_rend # isort:skip
cfg = get_cfg()
cfg.DATALOADER.NUM_WORKERS = 0
point_rend.add_pointrend_config(cfg)
cfg.merge_from_file(config_path)
cfg.freeze()
model = build_model(cfg)
image = get_sample_coco_image()
inputs = tuple(image.clone() for _ in range(batch))
return self._test_model(
model, inputs, inference_func, opset_version, save_onnx_graph_path, **export_kwargs
)
|