Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,662 Bytes
a9a0ec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
# Copyright (c) Facebook, Inc. and its affiliates.
from __future__ import absolute_import, division, print_function, unicode_literals
import logging
import math
import random
import unittest
import torch
from fvcore.common.benchmark import benchmark
from detectron2.layers.rotated_boxes import pairwise_iou_rotated
from detectron2.structures.boxes import Boxes
from detectron2.structures.rotated_boxes import RotatedBoxes, pairwise_iou
from detectron2.utils.testing import reload_script_model
logger = logging.getLogger(__name__)
class TestRotatedBoxesLayer(unittest.TestCase):
def test_iou_0_dim_cpu(self):
boxes1 = torch.rand(0, 5, dtype=torch.float32)
boxes2 = torch.rand(10, 5, dtype=torch.float32)
expected_ious = torch.zeros(0, 10, dtype=torch.float32)
ious = pairwise_iou_rotated(boxes1, boxes2)
self.assertTrue(torch.allclose(ious, expected_ious))
boxes1 = torch.rand(10, 5, dtype=torch.float32)
boxes2 = torch.rand(0, 5, dtype=torch.float32)
expected_ious = torch.zeros(10, 0, dtype=torch.float32)
ious = pairwise_iou_rotated(boxes1, boxes2)
self.assertTrue(torch.allclose(ious, expected_ious))
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_iou_0_dim_cuda(self):
boxes1 = torch.rand(0, 5, dtype=torch.float32)
boxes2 = torch.rand(10, 5, dtype=torch.float32)
expected_ious = torch.zeros(0, 10, dtype=torch.float32)
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
boxes1 = torch.rand(10, 5, dtype=torch.float32)
boxes2 = torch.rand(0, 5, dtype=torch.float32)
expected_ious = torch.zeros(10, 0, dtype=torch.float32)
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
def test_iou_half_overlap_cpu(self):
boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32)
boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32)
expected_ious = torch.tensor([[0.5]], dtype=torch.float32)
ious = pairwise_iou_rotated(boxes1, boxes2)
self.assertTrue(torch.allclose(ious, expected_ious))
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_iou_half_overlap_cuda(self):
boxes1 = torch.tensor([[0.5, 0.5, 1.0, 1.0, 0.0]], dtype=torch.float32)
boxes2 = torch.tensor([[0.25, 0.5, 0.5, 1.0, 0.0]], dtype=torch.float32)
expected_ious = torch.tensor([[0.5]], dtype=torch.float32)
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
self.assertTrue(torch.allclose(ious_cuda.cpu(), expected_ious))
def test_iou_precision(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor([[565, 565, 10, 10.0, 0]], dtype=torch.float32, device=device)
boxes2 = torch.tensor([[565, 565, 10, 8.3, 0]], dtype=torch.float32, device=device)
iou = 8.3 / 10.0
expected_ious = torch.tensor([[iou]], dtype=torch.float32)
ious = pairwise_iou_rotated(boxes1, boxes2)
self.assertTrue(torch.allclose(ious.cpu(), expected_ious))
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_iou_too_many_boxes_cuda(self):
s1, s2 = 5, 1289035
boxes1 = torch.zeros(s1, 5)
boxes2 = torch.zeros(s2, 5)
ious_cuda = pairwise_iou_rotated(boxes1.cuda(), boxes2.cuda())
self.assertTupleEqual(tuple(ious_cuda.shape), (s1, s2))
def test_iou_extreme(self):
# Cause floating point issues in cuda kernels (#1266)
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device)
boxes2 = torch.tensor(
[
[
-1.117407639806935e17,
1.3858420478349148e18,
1000.0000610351562,
1000.0000610351562,
1612.0,
]
],
device=device,
)
ious = pairwise_iou_rotated(boxes1, boxes2)
self.assertTrue(ious.min() >= 0, ious)
def test_iou_issue_2154(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor(
[
[
296.6620178222656,
458.73883056640625,
23.515729904174805,
47.677001953125,
0.08795166015625,
]
],
device=device,
)
boxes2 = torch.tensor(
[[296.66201, 458.73882000000003, 23.51573, 47.67702, 0.087951]],
device=device,
)
ious = pairwise_iou_rotated(boxes1, boxes2)
expected_ious = torch.tensor([[1.0]], dtype=torch.float32)
self.assertTrue(torch.allclose(ious.cpu(), expected_ious))
def test_iou_issue_2167(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor(
[
[
2563.74462890625000000000,
1436.79016113281250000000,
2174.70336914062500000000,
214.09500122070312500000,
115.11834716796875000000,
]
],
device=device,
)
boxes2 = torch.tensor(
[
[
2563.74462890625000000000,
1436.79028320312500000000,
2174.70288085937500000000,
214.09495544433593750000,
115.11835479736328125000,
]
],
device=device,
)
ious = pairwise_iou_rotated(boxes1, boxes2)
expected_ious = torch.tensor([[1.0]], dtype=torch.float32)
self.assertTrue(torch.allclose(ious.cpu(), expected_ious))
class TestRotatedBoxesStructure(unittest.TestCase):
def test_clip_area_0_degree(self):
for _ in range(50):
num_boxes = 100
boxes_5d = torch.zeros(num_boxes, 5)
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500)
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500)
# Convert from (x_ctr, y_ctr, w, h, 0) to (x1, y1, x2, y2)
boxes_4d = torch.zeros(num_boxes, 4)
boxes_4d[:, 0] = boxes_5d[:, 0] - boxes_5d[:, 2] / 2.0
boxes_4d[:, 1] = boxes_5d[:, 1] - boxes_5d[:, 3] / 2.0
boxes_4d[:, 2] = boxes_5d[:, 0] + boxes_5d[:, 2] / 2.0
boxes_4d[:, 3] = boxes_5d[:, 1] + boxes_5d[:, 3] / 2.0
image_size = (500, 600)
test_boxes_4d = Boxes(boxes_4d)
test_boxes_5d = RotatedBoxes(boxes_5d)
# Before clip
areas_4d = test_boxes_4d.area()
areas_5d = test_boxes_5d.area()
self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5))
# After clip
test_boxes_4d.clip(image_size)
test_boxes_5d.clip(image_size)
areas_4d = test_boxes_4d.area()
areas_5d = test_boxes_5d.area()
self.assertTrue(torch.allclose(areas_4d, areas_5d, atol=1e-1, rtol=1e-5))
def test_clip_area_arbitrary_angle(self):
num_boxes = 100
boxes_5d = torch.zeros(num_boxes, 5)
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500)
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500)
boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800)
clip_angle_threshold = random.uniform(0, 180)
image_size = (500, 600)
test_boxes_5d = RotatedBoxes(boxes_5d)
# Before clip
areas_before = test_boxes_5d.area()
# After clip
test_boxes_5d.clip(image_size, clip_angle_threshold)
areas_diff = test_boxes_5d.area() - areas_before
# the areas should only decrease after clipping
self.assertTrue(torch.all(areas_diff <= 0))
# whenever the box is clipped (thus the area shrinks),
# the angle for the box must be within the clip_angle_threshold
# Note that the clip function will normalize the angle range
# to be within (-180, 180]
self.assertTrue(
torch.all(
torch.abs(test_boxes_5d.tensor[:, 4][torch.where(areas_diff < 0)])
< clip_angle_threshold
)
)
def test_normalize_angles(self):
# torch.manual_seed(0)
for _ in range(50):
num_boxes = 100
boxes_5d = torch.zeros(num_boxes, 5)
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-100, 500)
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, 500)
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, 500)
boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800)
rotated_boxes = RotatedBoxes(boxes_5d)
normalized_boxes = rotated_boxes.clone()
normalized_boxes.normalize_angles()
self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] >= -180))
self.assertTrue(torch.all(normalized_boxes.tensor[:, 4] < 180))
# x, y, w, h should not change
self.assertTrue(torch.allclose(boxes_5d[:, :4], normalized_boxes.tensor[:, :4]))
# the cos/sin values of the angles should stay the same
self.assertTrue(
torch.allclose(
torch.cos(boxes_5d[:, 4] * math.pi / 180),
torch.cos(normalized_boxes.tensor[:, 4] * math.pi / 180),
atol=1e-5,
)
)
self.assertTrue(
torch.allclose(
torch.sin(boxes_5d[:, 4] * math.pi / 180),
torch.sin(normalized_boxes.tensor[:, 4] * math.pi / 180),
atol=1e-5,
)
)
def test_pairwise_iou_0_degree(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor(
[[0.5, 0.5, 1.0, 1.0, 0.0], [0.5, 0.5, 1.0, 1.0, 0.0]],
dtype=torch.float32,
device=device,
)
boxes2 = torch.tensor(
[
[0.5, 0.5, 1.0, 1.0, 0.0],
[0.25, 0.5, 0.5, 1.0, 0.0],
[0.5, 0.25, 1.0, 0.5, 0.0],
[0.25, 0.25, 0.5, 0.5, 0.0],
[0.75, 0.75, 0.5, 0.5, 0.0],
[1.0, 1.0, 1.0, 1.0, 0.0],
],
dtype=torch.float32,
device=device,
)
expected_ious = torch.tensor(
[
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
[1.0, 0.5, 0.5, 0.25, 0.25, 0.25 / (2 - 0.25)],
],
dtype=torch.float32,
device=device,
)
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_pairwise_iou_45_degrees(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor(
[
[1, 1, math.sqrt(2), math.sqrt(2), 45],
[1, 1, 2 * math.sqrt(2), 2 * math.sqrt(2), -45],
],
dtype=torch.float32,
device=device,
)
boxes2 = torch.tensor([[1, 1, 2, 2, 0]], dtype=torch.float32, device=device)
expected_ious = torch.tensor([[0.5], [0.5]], dtype=torch.float32, device=device)
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_pairwise_iou_orthogonal(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor([[5, 5, 10, 6, 55]], dtype=torch.float32, device=device)
boxes2 = torch.tensor([[5, 5, 10, 6, -35]], dtype=torch.float32, device=device)
iou = (6.0 * 6.0) / (6.0 * 6.0 + 4.0 * 6.0 + 4.0 * 6.0)
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_pairwise_iou_large_close_boxes(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
boxes1 = torch.tensor(
[[299.500000, 417.370422, 600.000000, 364.259186, 27.1828]],
dtype=torch.float32,
device=device,
)
boxes2 = torch.tensor(
[[299.500000, 417.370422, 600.000000, 364.259155, 27.1828]],
dtype=torch.float32,
device=device,
)
iou = 364.259155 / 364.259186
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_pairwise_iou_many_boxes(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
num_boxes1 = 100
num_boxes2 = 200
boxes1 = torch.stack(
[
torch.tensor(
[5 + 20 * i, 5 + 20 * i, 10, 10, 0],
dtype=torch.float32,
device=device,
)
for i in range(num_boxes1)
]
)
boxes2 = torch.stack(
[
torch.tensor(
[5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0],
dtype=torch.float32,
device=device,
)
for i in range(num_boxes2)
]
)
expected_ious = torch.zeros(num_boxes1, num_boxes2, dtype=torch.float32, device=device)
for i in range(min(num_boxes1, num_boxes2)):
expected_ious[i][i] = (1 + 9 * i / num_boxes2) / 10.0
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_pairwise_iou_issue1207_simplified(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
# Simplified test case of D2-issue-1207
boxes1 = torch.tensor([[3, 3, 8, 2, -45.0]], device=device)
boxes2 = torch.tensor([[6, 0, 8, 2, -45.0]], device=device)
iou = 0.0
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_pairwise_iou_issue1207(self):
for device in ["cpu"] + (["cuda"] if torch.cuda.is_available() else []):
# The original test case in D2-issue-1207
boxes1 = torch.tensor([[160.0, 153.0, 230.0, 23.0, -37.0]], device=device)
boxes2 = torch.tensor([[190.0, 127.0, 80.0, 21.0, -46.0]], device=device)
iou = 0.0
expected_ious = torch.tensor([[iou]], dtype=torch.float32, device=device)
ious = pairwise_iou(RotatedBoxes(boxes1), RotatedBoxes(boxes2))
self.assertTrue(torch.allclose(ious, expected_ious))
def test_empty_cat(self):
x = RotatedBoxes.cat([])
self.assertTrue(x.tensor.shape, (0, 5))
def test_scriptability(self):
def func(x):
boxes = RotatedBoxes(x)
test = boxes.to(torch.device("cpu")).tensor
return boxes.area(), test
f = torch.jit.script(func)
f = reload_script_model(f)
f(torch.rand((3, 5)))
data = torch.rand((3, 5))
def func_cat(x: torch.Tensor):
boxes1 = RotatedBoxes(x)
boxes2 = RotatedBoxes(x)
# this is not supported by torchscript for now.
# boxes3 = RotatedBoxes.cat([boxes1, boxes2])
boxes3 = boxes1.cat([boxes1, boxes2])
return boxes3
f = torch.jit.script(func_cat)
script_box = f(data)
self.assertTrue(torch.equal(torch.cat([data, data]), script_box.tensor))
def benchmark_rotated_iou():
num_boxes1 = 200
num_boxes2 = 500
boxes1 = torch.stack(
[
torch.tensor([5 + 20 * i, 5 + 20 * i, 10, 10, 0], dtype=torch.float32)
for i in range(num_boxes1)
]
)
boxes2 = torch.stack(
[
torch.tensor(
[5 + 20 * i, 5 + 20 * i, 10, 1 + 9 * i / num_boxes2, 0],
dtype=torch.float32,
)
for i in range(num_boxes2)
]
)
def func(dev, n=1):
b1 = boxes1.to(device=dev)
b2 = boxes2.to(device=dev)
def bench():
for _ in range(n):
pairwise_iou_rotated(b1, b2)
if dev.type == "cuda":
torch.cuda.synchronize()
return bench
# only run it once per timed loop, since it's slow
args = [{"dev": torch.device("cpu"), "n": 1}]
if torch.cuda.is_available():
args.append({"dev": torch.device("cuda"), "n": 10})
benchmark(func, "rotated_iou", args, warmup_iters=3)
if __name__ == "__main__":
unittest.main()
benchmark_rotated_iou()
|