File size: 7,636 Bytes
a9a0ec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import unittest
import torch

from detectron2.layers import DeformConv, ModulatedDeformConv
from detectron2.utils.env import TORCH_VERSION


@unittest.skipIf(
    TORCH_VERSION == (1, 8) and torch.cuda.is_available(),
    "This test fails under cuda11 + torch1.8.",
)
class DeformableTest(unittest.TestCase):
    @unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu")
    def test_forward_output(self):
        device = torch.device("cuda")
        N, C, H, W = shape = 1, 1, 5, 5
        kernel_size = 3
        padding = 1

        inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device)
        """
        0  1  2   3 4
        5  6  7   8 9
        10 11 12 13 14
        15 16 17 18 19
        20 21 22 23 24
        """
        offset_channels = kernel_size * kernel_size * 2
        offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device)

        # Test DCN v1
        deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
        deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight))
        output = deform(inputs, offset)
        output = output.detach().cpu().numpy()
        deform_results = np.array(
            [
                [30, 41.25, 48.75, 45, 28.75],
                [62.25, 81, 90, 80.25, 50.25],
                [99.75, 126, 135, 117.75, 72.75],
                [105, 131.25, 138.75, 120, 73.75],
                [71.75, 89.25, 93.75, 80.75, 49.5],
            ]
        )
        self.assertTrue(np.allclose(output.flatten(), deform_results.flatten()))

        # Test DCN v2
        mask_channels = kernel_size * kernel_size
        mask = torch.full((N, mask_channels, H, W), 0.5, dtype=torch.float32).to(device)
        modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to(
            device
        )
        modulate_deform.weight = deform.weight
        output = modulate_deform(inputs, offset, mask)
        output = output.detach().cpu().numpy()
        self.assertTrue(np.allclose(output.flatten(), deform_results.flatten() * 0.5))

    def test_forward_output_on_cpu(self):
        device = torch.device("cpu")
        N, C, H, W = shape = 1, 1, 5, 5
        kernel_size = 3
        padding = 1

        inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape).to(device)

        offset_channels = kernel_size * kernel_size * 2
        offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32).to(device)

        # Test DCN v1 on cpu
        deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
        deform.weight = torch.nn.Parameter(torch.ones_like(deform.weight))
        output = deform(inputs, offset)
        output = output.detach().cpu().numpy()
        deform_results = np.array(
            [
                [30, 41.25, 48.75, 45, 28.75],
                [62.25, 81, 90, 80.25, 50.25],
                [99.75, 126, 135, 117.75, 72.75],
                [105, 131.25, 138.75, 120, 73.75],
                [71.75, 89.25, 93.75, 80.75, 49.5],
            ]
        )
        self.assertTrue(np.allclose(output.flatten(), deform_results.flatten()))

    @unittest.skipIf(not torch.cuda.is_available(), "This test requires gpu access")
    def test_forward_output_on_cpu_equals_output_on_gpu(self):
        N, C, H, W = shape = 2, 4, 10, 10
        kernel_size = 3
        padding = 1

        for groups in [1, 2]:
            inputs = torch.arange(np.prod(shape), dtype=torch.float32).reshape(*shape)
            offset_channels = kernel_size * kernel_size * 2
            offset = torch.full((N, offset_channels, H, W), 0.5, dtype=torch.float32)

            deform_gpu = DeformConv(
                C, C, kernel_size=kernel_size, padding=padding, groups=groups
            ).to("cuda")
            deform_gpu.weight = torch.nn.Parameter(torch.ones_like(deform_gpu.weight))
            output_gpu = deform_gpu(inputs.to("cuda"), offset.to("cuda")).detach().cpu().numpy()

            deform_cpu = DeformConv(
                C, C, kernel_size=kernel_size, padding=padding, groups=groups
            ).to("cpu")
            deform_cpu.weight = torch.nn.Parameter(torch.ones_like(deform_cpu.weight))
            output_cpu = deform_cpu(inputs.to("cpu"), offset.to("cpu")).detach().numpy()

        self.assertTrue(np.allclose(output_gpu.flatten(), output_cpu.flatten()))

    @unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu")
    def test_small_input(self):
        device = torch.device("cuda")
        for kernel_size in [3, 5]:
            padding = kernel_size // 2
            N, C, H, W = shape = (1, 1, kernel_size - 1, kernel_size - 1)

            inputs = torch.rand(shape).to(device)  # input size is smaller than kernel size

            offset_channels = kernel_size * kernel_size * 2
            offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device)
            deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
            output = deform(inputs, offset)
            self.assertTrue(output.shape == inputs.shape)

            mask_channels = kernel_size * kernel_size
            mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device)
            modulate_deform = ModulatedDeformConv(
                C, C, kernel_size, padding=padding, bias=False
            ).to(device)
            output = modulate_deform(inputs, offset, mask)
            self.assertTrue(output.shape == inputs.shape)

    @unittest.skipIf(not torch.cuda.is_available(), "Deformable not supported for cpu")
    def test_raise_exception(self):
        device = torch.device("cuda")
        N, C, H, W = shape = 1, 1, 3, 3
        kernel_size = 3
        padding = 1

        inputs = torch.rand(shape, dtype=torch.float32).to(device)
        offset_channels = kernel_size * kernel_size  # This is wrong channels for offset
        offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device)
        deform = DeformConv(C, C, kernel_size=kernel_size, padding=padding).to(device)
        self.assertRaises(RuntimeError, deform, inputs, offset)

        offset_channels = kernel_size * kernel_size * 2
        offset = torch.randn((N, offset_channels, H, W), dtype=torch.float32).to(device)
        mask_channels = kernel_size * kernel_size * 2  # This is wrong channels for mask
        mask = torch.ones((N, mask_channels, H, W), dtype=torch.float32).to(device)
        modulate_deform = ModulatedDeformConv(C, C, kernel_size, padding=padding, bias=False).to(
            device
        )
        self.assertRaises(RuntimeError, modulate_deform, inputs, offset, mask)

    def test_repr(self):
        module = DeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2)
        correct_string = (
            "DeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), "
            "stride=(1, 1), padding=(1, 1), dilation=(1, 1), "
            "groups=1, deformable_groups=2, bias=False)"
        )
        self.assertEqual(repr(module), correct_string)

        module = ModulatedDeformConv(3, 10, kernel_size=3, padding=1, deformable_groups=2)
        correct_string = (
            "ModulatedDeformConv(in_channels=3, out_channels=10, kernel_size=(3, 3), "
            "stride=1, padding=1, dilation=1, groups=1, deformable_groups=2, bias=True)"
        )
        self.assertEqual(repr(module), correct_string)


if __name__ == "__main__":
    unittest.main()