import gradio as gr from alignment import ( DataArguments, ModelArguments, apply_chat_template, get_datasets, get_tokenizer, ) def reformat(dataset_name, train_split, test_split, model_name, upload_name, token): data_args = DataArguments(chat_template=None, dataset_mixer={dataset_name: 1.0}, dataset_splits=[train_split, test_split], max_train_samples=None, max_eval_samples=None, preprocessing_num_workers=12, truncation_side=None) model_args = ModelArguments(base_model_revision=None, model_name_or_path=model_name, model_revision='main', model_code_revision=None, torch_dtype='auto', trust_remote_code=True, use_flash_attention_2=True, use_peft=True, lora_r=64, lora_alpha=16, lora_dropout=0.1, lora_target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj'], lora_modules_to_save=None, load_in_8bit=False, load_in_4bit=True, bnb_4bit_quant_type='nf4', use_bnb_nested_quant=False) ############### # Load datasets ############### raw_datasets = get_datasets(data_args, splits=data_args.dataset_splits) output = f"Dataset successfully formatted and pushed! Dataset and their proportions: {[split + ' : ' + str(dset.num_rows) for split, dset in raw_datasets.items()]}" ################ # Load tokenizer ################ tokenizer = get_tokenizer(model_args, data_args) ##################### # Apply chat template ##################### raw_datasets = raw_datasets.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer, "task": "sft"}) train_dataset = raw_datasets["train"] eval_dataset = raw_datasets["test"] raw_datasets.push_to_hub(upload_name, token=token) return gr.Markdown( value=output ) with gr.Blocks() as demo: gr.Markdown("## Dataset Chat Template") gr.Markdown("Format Datasets like HuggingFaceH4/no_robots to be AutoTrain compatible.") token = gr.Textbox( label="Hugging Face Write Token", value="", lines=1, max_lines=1, interactive=True, type="password", ) dataset_name = gr.Textbox( label="Dataset Name (e.g. HuggingFaceH4/no_robots)", value="HuggingFaceH4/no_robots", lines=1, max_lines=1, interactive=True, ) train_split = gr.Textbox( label="Train Split Name (e.g. train_sft)", value="train_sft", lines=1, max_lines=1, interactive=True, ) test_split = gr.Textbox( label="Test Split Name (e.g. test_sft)", value="test_sft", lines=1, max_lines=1, interactive=True, ) model_name = gr.Textbox( label="Model Name (e.g. mistralai/Mistral-7B-v0.1)", value="mistralai/Mistral-7B-v0.1", lines=1, max_lines=1, interactive=True, ) upload_name = gr.Textbox( label="New Dataset Name (e.g. rishiraj/no_robots)", value="", lines=1, max_lines=1, interactive=True, ) submit = gr.Button(value="Apply Template & Push") op = gr.Markdown() submit.click(reformat, inputs=[dataset_name, train_split, test_split, model_name, upload_name, token], outputs=[op]) if __name__ == "__main__": demo.launch()