Spaces:
Sleeping
Sleeping
Upload data.py
Browse files
data.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import re
|
18 |
+
from typing import List, Literal, Optional
|
19 |
+
|
20 |
+
from datasets import DatasetDict, concatenate_datasets, load_dataset
|
21 |
+
|
22 |
+
from .configs import DataArguments
|
23 |
+
|
24 |
+
|
25 |
+
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
|
26 |
+
|
27 |
+
|
28 |
+
def apply_chat_template(
|
29 |
+
example, tokenizer, task: Literal["sft", "generation", "rm", "dpo"] = "sft", assistant_prefix="<|assistant|>\n"
|
30 |
+
):
|
31 |
+
def _strip_prefix(s, pattern):
|
32 |
+
# Use re.escape to escape any special characters in the pattern
|
33 |
+
return re.sub(f"^{re.escape(pattern)}", "", s)
|
34 |
+
|
35 |
+
if task in ["sft", "generation"]:
|
36 |
+
messages = example["messages"]
|
37 |
+
# We add an empty system message if there is none
|
38 |
+
if messages[0]["role"] != "system":
|
39 |
+
messages.insert(0, {"role": "system", "content": ""})
|
40 |
+
example["text"] = tokenizer.apply_chat_template(
|
41 |
+
messages, tokenize=False, add_generation_prompt=True if task == "generation" else False
|
42 |
+
)
|
43 |
+
elif task == "rm":
|
44 |
+
if all(k in example.keys() for k in ("chosen", "rejected")):
|
45 |
+
chosen_messages = example["chosen"]
|
46 |
+
rejected_messages = example["rejected"]
|
47 |
+
# We add an empty system message if there is none
|
48 |
+
if chosen_messages[0]["role"] != "system":
|
49 |
+
chosen_messages.insert(0, {"role": "system", "content": ""})
|
50 |
+
if rejected_messages[0]["role"] != "system":
|
51 |
+
rejected_messages.insert(0, {"role": "system", "content": ""})
|
52 |
+
example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
|
53 |
+
example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
|
54 |
+
else:
|
55 |
+
raise ValueError(
|
56 |
+
f"Could not format example as dialogue for `rm` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
|
57 |
+
)
|
58 |
+
elif task == "dpo":
|
59 |
+
if all(k in example.keys() for k in ("chosen", "rejected")):
|
60 |
+
# Compared to reward modeling, we filter out the prompt, so the text is everything after the last assistant token
|
61 |
+
prompt_messages = [[msg for msg in example["chosen"] if msg["role"] == "user"][0]]
|
62 |
+
# Insert system message
|
63 |
+
if example["chosen"][0]["role"] != "system":
|
64 |
+
prompt_messages.insert(0, {"role": "system", "content": ""})
|
65 |
+
else:
|
66 |
+
prompt_messages.insert(0, example["chosen"][0])
|
67 |
+
# TODO: handle case where chosen/rejected also have system messages
|
68 |
+
chosen_messages = example["chosen"][1:]
|
69 |
+
rejected_messages = example["rejected"][1:]
|
70 |
+
example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
|
71 |
+
example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
|
72 |
+
example["text_prompt"] = tokenizer.apply_chat_template(
|
73 |
+
prompt_messages, tokenize=False, add_generation_prompt=True
|
74 |
+
)
|
75 |
+
|
76 |
+
example["text_chosen"] = _strip_prefix(example["text_chosen"], assistant_prefix)
|
77 |
+
example["text_rejected"] = _strip_prefix(example["text_rejected"], assistant_prefix)
|
78 |
+
else:
|
79 |
+
raise ValueError(
|
80 |
+
f"Could not format example as dialogue for `dpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
|
81 |
+
)
|
82 |
+
return example
|
83 |
+
|
84 |
+
|
85 |
+
def get_datasets(
|
86 |
+
data_config: DataArguments | dict,
|
87 |
+
splits: List[str] = ["train", "test"],
|
88 |
+
shuffle: bool = True,
|
89 |
+
) -> DatasetDict:
|
90 |
+
"""
|
91 |
+
Loads one or more datasets with varying training set proportions.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
data_config (`DataArguments` or `dict`):
|
95 |
+
Dataset configuration and split proportions.
|
96 |
+
splits (`List[str]`, *optional*, defaults to `['train', 'test']`):
|
97 |
+
Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
|
98 |
+
shuffle (`bool`, *optional*, defaults to `True`):
|
99 |
+
Whether to shuffle the training data.
|
100 |
+
|
101 |
+
Returns
|
102 |
+
[`DatasetDict`]: The dataset dictionary containing the loaded datasets.
|
103 |
+
"""
|
104 |
+
|
105 |
+
if type(data_config) is DataArguments:
|
106 |
+
# Structure of the config to read the datasets and their mix
|
107 |
+
# datasets_mixer:
|
108 |
+
# - 'dataset1': 0.5
|
109 |
+
# - 'dataset2': 0.3
|
110 |
+
# - 'dataset3': 0.2
|
111 |
+
dataset_mixer = data_config.dataset_mixer
|
112 |
+
elif type(data_config) is dict:
|
113 |
+
# Structure of the input is:
|
114 |
+
# dataset_mixer = {
|
115 |
+
# "dataset1": 0.5,
|
116 |
+
# "dataset1": 0.3,
|
117 |
+
# "dataset1": 0.2,
|
118 |
+
# }
|
119 |
+
dataset_mixer = data_config
|
120 |
+
else:
|
121 |
+
raise ValueError(f"Data config {data_config} not recognized.")
|
122 |
+
|
123 |
+
raw_datasets = mix_datasets(dataset_mixer, splits=splits, shuffle=shuffle)
|
124 |
+
return raw_datasets
|
125 |
+
|
126 |
+
|
127 |
+
def mix_datasets(dataset_mixer: dict, splits: Optional[List[str]] = None, shuffle=True) -> DatasetDict:
|
128 |
+
"""
|
129 |
+
Loads and mixes datasets according to proportions specified in `dataset_mixer`.
|
130 |
+
|
131 |
+
Args:
|
132 |
+
dataset_mixer (`dict`):
|
133 |
+
Dictionary containing the dataset names and their training proportions. By default, all test proportions are 1.
|
134 |
+
splits (Optional[List[str]], *optional*, defaults to `None`):
|
135 |
+
Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
|
136 |
+
shuffle (`bool`, *optional*, defaults to `True`):
|
137 |
+
Whether to shuffle the training data.
|
138 |
+
"""
|
139 |
+
raw_datasets = DatasetDict()
|
140 |
+
raw_train_datasets = []
|
141 |
+
raw_val_datasets = []
|
142 |
+
fracs = []
|
143 |
+
for ds, frac in dataset_mixer.items():
|
144 |
+
fracs.append(frac)
|
145 |
+
for split in splits:
|
146 |
+
if "train" in split:
|
147 |
+
raw_train_datasets.append(
|
148 |
+
load_dataset(
|
149 |
+
ds,
|
150 |
+
split=split,
|
151 |
+
)
|
152 |
+
)
|
153 |
+
elif "test" in split:
|
154 |
+
raw_val_datasets.append(
|
155 |
+
load_dataset(
|
156 |
+
ds,
|
157 |
+
split=split,
|
158 |
+
)
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
raise ValueError(f"Split type {split} not recognized as one of test or train.")
|
162 |
+
|
163 |
+
if any(frac < 0 for frac in fracs):
|
164 |
+
raise ValueError("Dataset fractions cannot be negative.")
|
165 |
+
|
166 |
+
if len(raw_train_datasets) > 0:
|
167 |
+
train_subsets = []
|
168 |
+
for dataset, frac in zip(raw_train_datasets, fracs):
|
169 |
+
train_subset = dataset.select(range(int(frac * len(dataset))))
|
170 |
+
train_subsets.append(train_subset)
|
171 |
+
if shuffle:
|
172 |
+
raw_datasets["train"] = concatenate_datasets(train_subsets).shuffle(seed=42)
|
173 |
+
else:
|
174 |
+
raw_datasets["train"] = concatenate_datasets(train_subsets)
|
175 |
+
# No subsampling for test datasets to enable fair comparison across models
|
176 |
+
if len(raw_val_datasets) > 0:
|
177 |
+
if shuffle:
|
178 |
+
raw_datasets["test"] = concatenate_datasets(raw_val_datasets).shuffle(seed=42)
|
179 |
+
else:
|
180 |
+
raw_datasets["test"] = concatenate_datasets(raw_val_datasets)
|
181 |
+
|
182 |
+
if len(raw_datasets) == 0:
|
183 |
+
raise ValueError(
|
184 |
+
f"Dataset {dataset_mixer} not recognized with split {split}. Check the dataset has been correctly formatted."
|
185 |
+
)
|
186 |
+
|
187 |
+
return raw_datasets
|