Spaces:
Runtime error
Runtime error
Commit
•
9ae1b66
1
Parent(s):
1a53147
Init commit
Browse files- app.py +59 -0
- media/automatic-embeddings-cost.png +0 -0
- notebooks/automated_embeddings.ipynb +0 -749
- requirements.txt +1 -1
- src/my_logger.py +22 -0
- src/utilities.py +62 -0
- src/visualize_logs.py +46 -0
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
from huggingface_hub import WebhookPayload, WebhooksServer
|
6 |
+
|
7 |
+
from src.utilities import load_datasets, merge_and_update_datasets
|
8 |
+
from src.my_logger import setup_logger
|
9 |
+
from src.visualize_logs import log_file_to_html_string
|
10 |
+
|
11 |
+
proj_dir = Path(__name__).parent
|
12 |
+
|
13 |
+
logger = setup_logger(__name__)
|
14 |
+
|
15 |
+
SUBREDDIT = os.environ["SUBREDDIT"]
|
16 |
+
USERNAME = os.environ["USERNAME"]
|
17 |
+
OG_DATASET= f"{USERNAME}/dataset-creator-reddit-{SUBREDDIT}"
|
18 |
+
PROCESSED_DATASET = os.environ['PROCESSED_DATASET']
|
19 |
+
HUGGINGFACE_AUTH_TOKEN = os.environ["HUGGINGFACE_AUTH_TOKEN"]
|
20 |
+
WEBHOOK_SECRET = os.getenv("HF_WEBHOOK_SECRET", 'secret')
|
21 |
+
|
22 |
+
intro_md = """
|
23 |
+
# Processing BORU
|
24 |
+
This space is triggered by a webhook for changes on
|
25 |
+
[derek-thomas/dataset-creator-reddit-bestofredditorupdates](https://huggingface.co/datasets/derek-thomas/dataset-creator-reddit-bestofredditorupdates).
|
26 |
+
It then takes the updates from that dataset and get embeddings and puts the results in
|
27 |
+
[https://huggingface.co/datasets/derek-thomas/reddit-bestofredditorupdates-processed](https://huggingface.co/datasets/derek-thomas/reddit-bestofredditorupdates-processed)
|
28 |
+
"""
|
29 |
+
|
30 |
+
with gr.Blocks() as ui:
|
31 |
+
with gr.Tab("Application"):
|
32 |
+
gr.Markdown(intro_md)
|
33 |
+
output = gr.HTML(log_file_to_html_string, every=1)
|
34 |
+
|
35 |
+
app = WebhooksServer(ui=ui.queue(), webhook_secret=WEBHOOK_SECRET)
|
36 |
+
|
37 |
+
|
38 |
+
@app.add_webhook("/dataset_repo")
|
39 |
+
async def community(payload: WebhookPayload):
|
40 |
+
if payload.event.scope.startswith("repo"):
|
41 |
+
logger.info(f"Webhook received from {payload.repo.name} indicating a repo {payload.event.action}")
|
42 |
+
else:
|
43 |
+
return
|
44 |
+
|
45 |
+
logger.info(f"Loading new dataset...")
|
46 |
+
dataset, original_dataset = load_datasets()
|
47 |
+
logger.info(f"Loaded new dataset")
|
48 |
+
|
49 |
+
logger.info(f"Merging and Updating row...")
|
50 |
+
dataset = merge_and_update_datasets(dataset, original_dataset)
|
51 |
+
|
52 |
+
# Push the augmented dataset to the Hugging Face hub
|
53 |
+
logger.debug(f"Pushing processed data to the Hugging Face Hub...")
|
54 |
+
dataset.push_to_hub(PROCESSED_DATASET, token=HUGGINGFACE_AUTH_TOKEN)
|
55 |
+
logger.info(f"Pushed processed data to the Hugging Face Hub")
|
56 |
+
|
57 |
+
if __name__ == '__main__':
|
58 |
+
app.launch(server_name="0.0.0.0", show_error=True, server_port=7860)
|
59 |
+
# ui.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860)
|
media/automatic-embeddings-cost.png
DELETED
Binary file (68 kB)
|
|
notebooks/automated_embeddings.ipynb
DELETED
@@ -1,749 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "markdown",
|
5 |
-
"id": "5d9aca72-957a-4ee2-862f-e011b9cd3a62",
|
6 |
-
"metadata": {},
|
7 |
-
"source": [
|
8 |
-
"# Introduction\n",
|
9 |
-
"## Goal\n",
|
10 |
-
"I have a dataset I want to embed for semantic search (or QA, or RAG), I want the easiest way to do embed this and put it in a new dataset.\n",
|
11 |
-
"\n",
|
12 |
-
"## Approach\n",
|
13 |
-
"Im using a dataset from my favorite subreddit [r/bestofredditorupdates](). Since it has such long entries, I will use the new [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) since it has an 8k context length. Since Im GPU-poor I will deploy this using [Inference Endpoint](https://huggingface.co/inference-endpoints) to save money and time. To follow this you will need to add a payment method. To make it even easier, I'll make this fully API based."
|
14 |
-
]
|
15 |
-
},
|
16 |
-
{
|
17 |
-
"cell_type": "markdown",
|
18 |
-
"id": "d2534669-003d-490c-9d7a-32607fa5f404",
|
19 |
-
"metadata": {},
|
20 |
-
"source": [
|
21 |
-
"# Setup"
|
22 |
-
]
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"cell_type": "markdown",
|
26 |
-
"id": "3c830114-dd88-45a9-81b9-78b0e3da7384",
|
27 |
-
"metadata": {},
|
28 |
-
"source": [
|
29 |
-
"## Requirements"
|
30 |
-
]
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"cell_type": "code",
|
34 |
-
"execution_count": null,
|
35 |
-
"id": "35386f72-32cb-49fa-a108-3aa504e20429",
|
36 |
-
"metadata": {},
|
37 |
-
"outputs": [],
|
38 |
-
"source": [
|
39 |
-
"!pip install -q -r ../requirements.txt"
|
40 |
-
]
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"cell_type": "markdown",
|
44 |
-
"id": "b6f72042-173d-4a72-ade1-9304b43b528d",
|
45 |
-
"metadata": {},
|
46 |
-
"source": [
|
47 |
-
"## Imports"
|
48 |
-
]
|
49 |
-
},
|
50 |
-
{
|
51 |
-
"cell_type": "code",
|
52 |
-
"execution_count": 1,
|
53 |
-
"id": "e2beecdd-d033-4736-bd45-6754ec53b4ac",
|
54 |
-
"metadata": {
|
55 |
-
"tags": []
|
56 |
-
},
|
57 |
-
"outputs": [],
|
58 |
-
"source": [
|
59 |
-
"import asyncio\n",
|
60 |
-
"from getpass import getpass\n",
|
61 |
-
"import json\n",
|
62 |
-
"from pathlib import Path\n",
|
63 |
-
"import time\n",
|
64 |
-
"\n",
|
65 |
-
"from aiohttp import ClientSession, ClientTimeout\n",
|
66 |
-
"from datasets import load_dataset, Dataset, DatasetDict\n",
|
67 |
-
"from huggingface_hub import notebook_login\n",
|
68 |
-
"import pandas as pd\n",
|
69 |
-
"import requests\n",
|
70 |
-
"from tqdm.auto import tqdm"
|
71 |
-
]
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"cell_type": "markdown",
|
75 |
-
"id": "5eece903-64ce-435d-a2fd-096c0ff650bf",
|
76 |
-
"metadata": {},
|
77 |
-
"source": [
|
78 |
-
"## Config\n",
|
79 |
-
"You need to fill this in with your desired repos. Note I used 5 for the `MAX_WORKERS` since `jina-embeddings-v2` are quite memory hungry. "
|
80 |
-
]
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"cell_type": "code",
|
84 |
-
"execution_count": 2,
|
85 |
-
"id": "dcd7daed-6aca-4fe7-85ce-534bdcd8bc87",
|
86 |
-
"metadata": {
|
87 |
-
"tags": []
|
88 |
-
},
|
89 |
-
"outputs": [],
|
90 |
-
"source": [
|
91 |
-
"dataset_in = 'derek-thomas/dataset-creator-reddit-bestofredditorupdates'\n",
|
92 |
-
"dataset_out = \"processed-bestofredditorupdates\"\n",
|
93 |
-
"endpoint_name = \"boru-jina-embeddings-demo\"\n",
|
94 |
-
"\n",
|
95 |
-
"MAX_WORKERS = 5 "
|
96 |
-
]
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"cell_type": "code",
|
100 |
-
"execution_count": 3,
|
101 |
-
"id": "88cdbd73-5923-4ae9-9940-b6be935f70fa",
|
102 |
-
"metadata": {
|
103 |
-
"tags": []
|
104 |
-
},
|
105 |
-
"outputs": [
|
106 |
-
{
|
107 |
-
"name": "stdin",
|
108 |
-
"output_type": "stream",
|
109 |
-
"text": [
|
110 |
-
"What is your Hugging Face 🤗 username? (with a credit card) ········\n",
|
111 |
-
"What is your Hugging Face 🤗 token? ········\n"
|
112 |
-
]
|
113 |
-
}
|
114 |
-
],
|
115 |
-
"source": [
|
116 |
-
"username = getpass(prompt=\"What is your Hugging Face 🤗 username? (with an added payment method)\")\n",
|
117 |
-
"hf_token = getpass(prompt='What is your Hugging Face 🤗 token?')"
|
118 |
-
]
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"cell_type": "markdown",
|
122 |
-
"id": "b972a719-2aed-4d2e-a24f-fae7776d5fa4",
|
123 |
-
"metadata": {},
|
124 |
-
"source": [
|
125 |
-
"## Get Dataset"
|
126 |
-
]
|
127 |
-
},
|
128 |
-
{
|
129 |
-
"cell_type": "code",
|
130 |
-
"execution_count": 4,
|
131 |
-
"id": "27835fa4-3a4f-44b1-a02a-5e31584a1bba",
|
132 |
-
"metadata": {
|
133 |
-
"tags": []
|
134 |
-
},
|
135 |
-
"outputs": [
|
136 |
-
{
|
137 |
-
"data": {
|
138 |
-
"text/plain": [
|
139 |
-
"Dataset({\n",
|
140 |
-
" features: ['date_utc', 'title', 'flair', 'content', 'poster', 'permalink', 'id', 'content_length', 'score'],\n",
|
141 |
-
" num_rows: 9991\n",
|
142 |
-
"})"
|
143 |
-
]
|
144 |
-
},
|
145 |
-
"execution_count": 4,
|
146 |
-
"metadata": {},
|
147 |
-
"output_type": "execute_result"
|
148 |
-
}
|
149 |
-
],
|
150 |
-
"source": [
|
151 |
-
"dataset = load_dataset(dataset_in, token=hf_token)\n",
|
152 |
-
"dataset['train']"
|
153 |
-
]
|
154 |
-
},
|
155 |
-
{
|
156 |
-
"cell_type": "code",
|
157 |
-
"execution_count": 5,
|
158 |
-
"id": "8846087e-4d0d-4c0e-8aeb-ea95d9e97126",
|
159 |
-
"metadata": {
|
160 |
-
"tags": []
|
161 |
-
},
|
162 |
-
"outputs": [
|
163 |
-
{
|
164 |
-
"data": {
|
165 |
-
"text/plain": [
|
166 |
-
"(9991,\n",
|
167 |
-
" {'date_utc': Timestamp('2022-12-31 18:16:22'),\n",
|
168 |
-
" 'title': 'To All BORU contributors, Thank you :)',\n",
|
169 |
-
" 'flair': 'CONCLUDED',\n",
|
170 |
-
" 'content': '[removed]',\n",
|
171 |
-
" 'poster': 'IsItAcOnSeQuEnCe',\n",
|
172 |
-
" 'permalink': '/r/BestofRedditorUpdates/comments/10004zw/to_all_boru_contributors_thank_you/',\n",
|
173 |
-
" 'id': '10004zw',\n",
|
174 |
-
" 'content_length': 9,\n",
|
175 |
-
" 'score': 1})"
|
176 |
-
]
|
177 |
-
},
|
178 |
-
"execution_count": 5,
|
179 |
-
"metadata": {},
|
180 |
-
"output_type": "execute_result"
|
181 |
-
}
|
182 |
-
],
|
183 |
-
"source": [
|
184 |
-
"documents = dataset['train'].to_pandas().to_dict('records')\n",
|
185 |
-
"len(documents), documents[0]"
|
186 |
-
]
|
187 |
-
},
|
188 |
-
{
|
189 |
-
"cell_type": "markdown",
|
190 |
-
"id": "93096cbc-81c6-4137-a283-6afb0f48fbb9",
|
191 |
-
"metadata": {},
|
192 |
-
"source": [
|
193 |
-
"# Inference Endpoints\n",
|
194 |
-
"## Create Inference Endpoint\n",
|
195 |
-
"We are going to use the [API](https://huggingface.co/docs/inference-endpoints/api_reference) to create an [Inference Endpoint](https://huggingface.co/inference-endpoints). This should provide a few main benefits:\n",
|
196 |
-
"- It's convenient (No clicking)\n",
|
197 |
-
"- It's repeatable (We have the code to run it easily)\n",
|
198 |
-
"- It's cheaper (No time spent waiting for it to load, and automatically shut it down)"
|
199 |
-
]
|
200 |
-
},
|
201 |
-
{
|
202 |
-
"cell_type": "code",
|
203 |
-
"execution_count": 6,
|
204 |
-
"id": "3a8f67b9-6ac6-4b5e-91ee-e48463191e1b",
|
205 |
-
"metadata": {
|
206 |
-
"tags": []
|
207 |
-
},
|
208 |
-
"outputs": [],
|
209 |
-
"source": [
|
210 |
-
"headers = {\n",
|
211 |
-
"\t\"Authorization\": f\"Bearer {hf_token}\",\n",
|
212 |
-
"\t\"Content-Type\": \"application/json\"\n",
|
213 |
-
"}\n",
|
214 |
-
"base_url = f\"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}\"\n",
|
215 |
-
"endpoint_url = f\"https://api.endpoints.huggingface.cloud/v2/endpoint/{username}/{endpoint_name}\""
|
216 |
-
]
|
217 |
-
},
|
218 |
-
{
|
219 |
-
"cell_type": "markdown",
|
220 |
-
"id": "0f2c97dc-34e8-49e9-b60e-f5b7366294c0",
|
221 |
-
"metadata": {},
|
222 |
-
"source": [
|
223 |
-
"There are a few design choices here:\n",
|
224 |
-
"- I'm using the `g5.2xlarge` since it is big and `jina-embeddings-v2` are memory hungry (remember the 8k context length). \n",
|
225 |
-
"- I didnt alter the default `MAX_BATCH_TOKENS` or `MAX_CONCURRENT_REQUESTS`\n",
|
226 |
-
" - You should consider this if you are making this production ready\n",
|
227 |
-
" - You will need to restrict these to match the HW you are running on\n",
|
228 |
-
"- As mentioned before, I chose the repo and the corresponding revision\n"
|
229 |
-
]
|
230 |
-
},
|
231 |
-
{
|
232 |
-
"cell_type": "code",
|
233 |
-
"execution_count": 7,
|
234 |
-
"id": "f1ea29cb-b69d-4340-859f-3646d650c68e",
|
235 |
-
"metadata": {
|
236 |
-
"tags": []
|
237 |
-
},
|
238 |
-
"outputs": [
|
239 |
-
{
|
240 |
-
"name": "stdout",
|
241 |
-
"output_type": "stream",
|
242 |
-
"text": [
|
243 |
-
"202\n"
|
244 |
-
]
|
245 |
-
}
|
246 |
-
],
|
247 |
-
"source": [
|
248 |
-
"data = {\n",
|
249 |
-
" \"accountId\": None,\n",
|
250 |
-
" \"compute\": {\n",
|
251 |
-
" \"accelerator\": \"gpu\",\n",
|
252 |
-
" \"instanceType\": \"g5.2xlarge\",\n",
|
253 |
-
" \"instanceSize\": \"medium\",\n",
|
254 |
-
" \"scaling\": {\n",
|
255 |
-
" \"maxReplica\": 1,\n",
|
256 |
-
" \"minReplica\": 1\n",
|
257 |
-
" }\n",
|
258 |
-
" },\n",
|
259 |
-
" \"model\": {\n",
|
260 |
-
" \"framework\": \"pytorch\",\n",
|
261 |
-
" \"image\": {\n",
|
262 |
-
" \"custom\": {\n",
|
263 |
-
" \"url\": \"ghcr.io/huggingface/text-embeddings-inference:0.3.0\",\n",
|
264 |
-
" \"health_route\": \"/health\",\n",
|
265 |
-
" \"env\": {\n",
|
266 |
-
" \"MAX_BATCH_TOKENS\": \"16384\",\n",
|
267 |
-
" \"MAX_CONCURRENT_REQUESTS\": \"512\",\n",
|
268 |
-
" \"MODEL_ID\": \"/repository\"\n",
|
269 |
-
" }\n",
|
270 |
-
" }\n",
|
271 |
-
" },\n",
|
272 |
-
" \"repository\": \"jinaai/jina-embeddings-v2-base-en\",\n",
|
273 |
-
" \"revision\": \"8705ed9657208b2d5220fffad1c3a30980d279d0\",\n",
|
274 |
-
" \"task\": \"sentence-embeddings\",\n",
|
275 |
-
" },\n",
|
276 |
-
" \"name\": endpoint_name,\n",
|
277 |
-
" \"provider\": {\n",
|
278 |
-
" \"region\": \"us-east-1\",\n",
|
279 |
-
" \"vendor\": \"aws\"\n",
|
280 |
-
" },\n",
|
281 |
-
" \"type\": \"protected\"\n",
|
282 |
-
"}\n",
|
283 |
-
"\n",
|
284 |
-
"response = requests.post(base_url, headers={**headers, 'accept': 'application/json'}, json=data)\n",
|
285 |
-
"\n",
|
286 |
-
"\n",
|
287 |
-
"print(response.status_code)"
|
288 |
-
]
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"cell_type": "markdown",
|
292 |
-
"id": "96d173b2-8980-4554-9039-c62843d3fc7d",
|
293 |
-
"metadata": {},
|
294 |
-
"source": [
|
295 |
-
"## Wait until its running\n",
|
296 |
-
"Here we use `tqdm` as a pretty way of displaying our status. It took about ~30s for this model to get the Inference Endpoint running."
|
297 |
-
]
|
298 |
-
},
|
299 |
-
{
|
300 |
-
"cell_type": "code",
|
301 |
-
"execution_count": 8,
|
302 |
-
"id": "b8aa66a9-3c8a-4040-9465-382c744f36cf",
|
303 |
-
"metadata": {
|
304 |
-
"tags": []
|
305 |
-
},
|
306 |
-
"outputs": [
|
307 |
-
{
|
308 |
-
"data": {
|
309 |
-
"application/vnd.jupyter.widget-view+json": {
|
310 |
-
"model_id": "a6f27d86f68b4000aa40e09ae079c6b0",
|
311 |
-
"version_major": 2,
|
312 |
-
"version_minor": 0
|
313 |
-
},
|
314 |
-
"text/plain": [
|
315 |
-
"Waiting for status to change: 0s [00:00, ?s/s]"
|
316 |
-
]
|
317 |
-
},
|
318 |
-
"metadata": {},
|
319 |
-
"output_type": "display_data"
|
320 |
-
},
|
321 |
-
{
|
322 |
-
"name": "stdout",
|
323 |
-
"output_type": "stream",
|
324 |
-
"text": [
|
325 |
-
"Status is 'running'.\n"
|
326 |
-
]
|
327 |
-
}
|
328 |
-
],
|
329 |
-
"source": [
|
330 |
-
"with tqdm(desc=\"Waiting for status to change\", unit=\"s\") as pbar:\n",
|
331 |
-
" while True:\n",
|
332 |
-
" response_json = requests.get(endpoint_url, headers=headers).json()\n",
|
333 |
-
" current_status = response_json['status']['state']\n",
|
334 |
-
"\n",
|
335 |
-
" if current_status == 'running':\n",
|
336 |
-
" print(\"Status is 'running'.\")\n",
|
337 |
-
" break\n",
|
338 |
-
"\n",
|
339 |
-
" pbar.set_description(f\"Status: {current_status}\")\n",
|
340 |
-
" time.sleep(2)\n",
|
341 |
-
" pbar.update(1)\n",
|
342 |
-
"\n",
|
343 |
-
"embedding_url = response_json['status']['url']"
|
344 |
-
]
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"cell_type": "markdown",
|
348 |
-
"id": "063fa066-e4d0-4a65-a82d-cf17db4af8d8",
|
349 |
-
"metadata": {},
|
350 |
-
"source": [
|
351 |
-
"I found that even though the status is running, I want to get a test message to run first before running our batch in parallel."
|
352 |
-
]
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"cell_type": "code",
|
356 |
-
"execution_count": 9,
|
357 |
-
"id": "66e00960-1d3d-490d-bedc-3eaf1924db76",
|
358 |
-
"metadata": {},
|
359 |
-
"outputs": [
|
360 |
-
{
|
361 |
-
"data": {
|
362 |
-
"application/vnd.jupyter.widget-view+json": {
|
363 |
-
"model_id": "4e03e5a3d07a498ca6b3631605724b62",
|
364 |
-
"version_major": 2,
|
365 |
-
"version_minor": 0
|
366 |
-
},
|
367 |
-
"text/plain": [
|
368 |
-
"Waiting for endpoint to accept requests: 0s [00:00, ?s/s]"
|
369 |
-
]
|
370 |
-
},
|
371 |
-
"metadata": {},
|
372 |
-
"output_type": "display_data"
|
373 |
-
},
|
374 |
-
{
|
375 |
-
"name": "stdout",
|
376 |
-
"output_type": "stream",
|
377 |
-
"text": [
|
378 |
-
"Endpoint is accepting requests\n"
|
379 |
-
]
|
380 |
-
}
|
381 |
-
],
|
382 |
-
"source": [
|
383 |
-
"payload = {\"inputs\": \"This sound track was beautiful! It paints the senery in your mind so well I would recomend it even to people who hate vid. game music!\"}\n",
|
384 |
-
"\n",
|
385 |
-
"with tqdm(desc=\"Waiting for endpoint to accept requests\", unit=\"s\") as pbar:\n",
|
386 |
-
" while True:\n",
|
387 |
-
" try:\n",
|
388 |
-
" response_json = requests.post(embedding_url, headers=headers, json=payload).json()\n",
|
389 |
-
"\n",
|
390 |
-
" # Assuming the successful response has a specific structure\n",
|
391 |
-
" if len(response_json[0]) == 768:\n",
|
392 |
-
" print(\"Endpoint is accepting requests\")\n",
|
393 |
-
" break\n",
|
394 |
-
"\n",
|
395 |
-
" except requests.ConnectionError as e:\n",
|
396 |
-
" pass\n",
|
397 |
-
"\n",
|
398 |
-
" # Delay between retries\n",
|
399 |
-
" time.sleep(5)\n",
|
400 |
-
" pbar.update(1)\n"
|
401 |
-
]
|
402 |
-
},
|
403 |
-
{
|
404 |
-
"cell_type": "markdown",
|
405 |
-
"id": "f7186126-ef6a-47d0-b158-112810649cd9",
|
406 |
-
"metadata": {},
|
407 |
-
"source": [
|
408 |
-
"# Get Embeddings"
|
409 |
-
]
|
410 |
-
},
|
411 |
-
{
|
412 |
-
"cell_type": "markdown",
|
413 |
-
"id": "1dadfd68-6d46-4ce8-a165-bfeb43b1f114",
|
414 |
-
"metadata": {},
|
415 |
-
"source": [
|
416 |
-
"Here I send a document, update it with the embedding, and return it. This happens in parallel with `MAX_WORKERS`."
|
417 |
-
]
|
418 |
-
},
|
419 |
-
{
|
420 |
-
"cell_type": "code",
|
421 |
-
"execution_count": 10,
|
422 |
-
"id": "ad3193fb-3def-42a8-968e-c63f2b864ca8",
|
423 |
-
"metadata": {
|
424 |
-
"tags": []
|
425 |
-
},
|
426 |
-
"outputs": [],
|
427 |
-
"source": [
|
428 |
-
"async def request(document, semaphore):\n",
|
429 |
-
" # Semaphore guard\n",
|
430 |
-
" async with semaphore:\n",
|
431 |
-
" payload = {\n",
|
432 |
-
" \"inputs\": document['content'] or document['title'] or '[deleted]',\n",
|
433 |
-
" \"truncate\": True\n",
|
434 |
-
" }\n",
|
435 |
-
" \n",
|
436 |
-
" timeout = ClientTimeout(total=10) # Set a timeout for requests (10 seconds here)\n",
|
437 |
-
"\n",
|
438 |
-
" async with ClientSession(timeout=timeout, headers=headers) as session:\n",
|
439 |
-
" async with session.post(embedding_url, json=payload) as resp:\n",
|
440 |
-
" if resp.status != 200:\n",
|
441 |
-
" raise RuntimeError(await resp.text())\n",
|
442 |
-
" result = await resp.json()\n",
|
443 |
-
" \n",
|
444 |
-
" document['embedding'] = result[0] # Assuming the API's output can be directly assigned\n",
|
445 |
-
" return document\n",
|
446 |
-
"\n",
|
447 |
-
"async def main(documents):\n",
|
448 |
-
" # Semaphore to limit concurrent requests. Adjust the number as needed.\n",
|
449 |
-
" semaphore = asyncio.BoundedSemaphore(MAX_WORKERS)\n",
|
450 |
-
"\n",
|
451 |
-
" # Creating a list of tasks\n",
|
452 |
-
" tasks = [request(document, semaphore) for document in documents]\n",
|
453 |
-
" \n",
|
454 |
-
" # Using tqdm to show progress. It's been integrated into the async loop.\n",
|
455 |
-
" for f in tqdm(asyncio.as_completed(tasks), total=len(documents)):\n",
|
456 |
-
" await f"
|
457 |
-
]
|
458 |
-
},
|
459 |
-
{
|
460 |
-
"cell_type": "code",
|
461 |
-
"execution_count": 11,
|
462 |
-
"id": "ec4983af-65eb-4841-808a-3738fb4d682d",
|
463 |
-
"metadata": {
|
464 |
-
"tags": []
|
465 |
-
},
|
466 |
-
"outputs": [
|
467 |
-
{
|
468 |
-
"data": {
|
469 |
-
"application/vnd.jupyter.widget-view+json": {
|
470 |
-
"model_id": "cb73af52244e40d2aab8bdac3a55d443",
|
471 |
-
"version_major": 2,
|
472 |
-
"version_minor": 0
|
473 |
-
},
|
474 |
-
"text/plain": [
|
475 |
-
" 0%| | 0/9991 [00:00<?, ?it/s]"
|
476 |
-
]
|
477 |
-
},
|
478 |
-
"metadata": {},
|
479 |
-
"output_type": "display_data"
|
480 |
-
},
|
481 |
-
{
|
482 |
-
"name": "stdout",
|
483 |
-
"output_type": "stream",
|
484 |
-
"text": [
|
485 |
-
"Embeddings = 9991 documents = 9991\n",
|
486 |
-
"32 min 14.53 sec\n"
|
487 |
-
]
|
488 |
-
}
|
489 |
-
],
|
490 |
-
"source": [
|
491 |
-
"start = time.perf_counter()\n",
|
492 |
-
"\n",
|
493 |
-
"# Get embeddings\n",
|
494 |
-
"await main(documents)\n",
|
495 |
-
"\n",
|
496 |
-
"# Make sure we got it all\n",
|
497 |
-
"count = 0\n",
|
498 |
-
"for document in documents:\n",
|
499 |
-
" if document['embedding'] and len(document['embedding']) == 768:\n",
|
500 |
-
" count += 1\n",
|
501 |
-
"print(f'Embeddings = {count} documents = {len(documents)}')\n",
|
502 |
-
"\n",
|
503 |
-
" \n",
|
504 |
-
"# Print elapsed time\n",
|
505 |
-
"elapsed_time = time.perf_counter() - start\n",
|
506 |
-
"minutes, seconds = divmod(elapsed_time, 60)\n",
|
507 |
-
"print(f\"{int(minutes)} min {seconds:.2f} sec\")"
|
508 |
-
]
|
509 |
-
},
|
510 |
-
{
|
511 |
-
"cell_type": "markdown",
|
512 |
-
"id": "bab97c7b-7bac-4bf5-9752-b528294dadc7",
|
513 |
-
"metadata": {},
|
514 |
-
"source": [
|
515 |
-
"## Pause Inference Endpoint\n",
|
516 |
-
"Now that we have finished, lets pause the endpoint so we don't incur any extra charges, this will also allow us to analyze the cost."
|
517 |
-
]
|
518 |
-
},
|
519 |
-
{
|
520 |
-
"cell_type": "code",
|
521 |
-
"execution_count": 12,
|
522 |
-
"id": "540a0978-7670-4ce3-95c1-3823cc113b85",
|
523 |
-
"metadata": {
|
524 |
-
"tags": []
|
525 |
-
},
|
526 |
-
"outputs": [
|
527 |
-
{
|
528 |
-
"name": "stdout",
|
529 |
-
"output_type": "stream",
|
530 |
-
"text": [
|
531 |
-
"200\n",
|
532 |
-
"paused\n"
|
533 |
-
]
|
534 |
-
}
|
535 |
-
],
|
536 |
-
"source": [
|
537 |
-
"response = requests.post(endpoint_url + '/pause', headers=headers)\n",
|
538 |
-
"\n",
|
539 |
-
"print(response.status_code)\n",
|
540 |
-
"print(response.json()['status']['state'])"
|
541 |
-
]
|
542 |
-
},
|
543 |
-
{
|
544 |
-
"cell_type": "markdown",
|
545 |
-
"id": "45ad65b7-3da2-4113-9b95-8fb4e21ae793",
|
546 |
-
"metadata": {},
|
547 |
-
"source": [
|
548 |
-
"# Push updated dataset to Hub\n",
|
549 |
-
"We now have our documents updated with the embeddings we wanted. First we need to convert it back to a `Dataset` format. I find its easiest to go from list of dicts -> `pd.DataFrame` -> `Dataset`"
|
550 |
-
]
|
551 |
-
},
|
552 |
-
{
|
553 |
-
"cell_type": "code",
|
554 |
-
"execution_count": 13,
|
555 |
-
"id": "9bb993f8-d624-4192-9626-8e9ed9888a1b",
|
556 |
-
"metadata": {
|
557 |
-
"tags": []
|
558 |
-
},
|
559 |
-
"outputs": [],
|
560 |
-
"source": [
|
561 |
-
"df = pd.DataFrame(documents)\n",
|
562 |
-
"dd = DatasetDict({'train': Dataset.from_pandas(df)})"
|
563 |
-
]
|
564 |
-
},
|
565 |
-
{
|
566 |
-
"cell_type": "code",
|
567 |
-
"execution_count": 14,
|
568 |
-
"id": "f48e7c55-d5b7-4ed6-8516-272ae38716b1",
|
569 |
-
"metadata": {
|
570 |
-
"tags": []
|
571 |
-
},
|
572 |
-
"outputs": [
|
573 |
-
{
|
574 |
-
"data": {
|
575 |
-
"application/vnd.jupyter.widget-view+json": {
|
576 |
-
"model_id": "84a481e0cf74494cb2eb9d9857701212",
|
577 |
-
"version_major": 2,
|
578 |
-
"version_minor": 0
|
579 |
-
},
|
580 |
-
"text/plain": [
|
581 |
-
"Pushing dataset shards to the dataset hub: 0%| | 0/1 [00:00<?, ?it/s]"
|
582 |
-
]
|
583 |
-
},
|
584 |
-
"metadata": {},
|
585 |
-
"output_type": "display_data"
|
586 |
-
},
|
587 |
-
{
|
588 |
-
"data": {
|
589 |
-
"application/vnd.jupyter.widget-view+json": {
|
590 |
-
"model_id": "b8f128dfe7c546bcbc8f04817e3ca48c",
|
591 |
-
"version_major": 2,
|
592 |
-
"version_minor": 0
|
593 |
-
},
|
594 |
-
"text/plain": [
|
595 |
-
"Creating parquet from Arrow format: 0%| | 0/10 [00:00<?, ?ba/s]"
|
596 |
-
]
|
597 |
-
},
|
598 |
-
"metadata": {},
|
599 |
-
"output_type": "display_data"
|
600 |
-
},
|
601 |
-
{
|
602 |
-
"data": {
|
603 |
-
"application/vnd.jupyter.widget-view+json": {
|
604 |
-
"model_id": "2dcc1d54036a49f1a1346a6be64e765a",
|
605 |
-
"version_major": 2,
|
606 |
-
"version_minor": 0
|
607 |
-
},
|
608 |
-
"text/plain": [
|
609 |
-
"Upload 1 LFS files: 0%| | 0/1 [00:00<?, ?it/s]"
|
610 |
-
]
|
611 |
-
},
|
612 |
-
"metadata": {},
|
613 |
-
"output_type": "display_data"
|
614 |
-
}
|
615 |
-
],
|
616 |
-
"source": [
|
617 |
-
"dd.push_to_hub(dataset_out, token=hf_token)"
|
618 |
-
]
|
619 |
-
},
|
620 |
-
{
|
621 |
-
"cell_type": "markdown",
|
622 |
-
"id": "41abea64-379d-49de-8d9a-355c2f4ce1ac",
|
623 |
-
"metadata": {},
|
624 |
-
"source": [
|
625 |
-
"# Analyze Usage\n",
|
626 |
-
"1. Go to your `dashboard_url` printed below\n",
|
627 |
-
"1. Click on the Usage & Cost tab\n",
|
628 |
-
"1. See how much you have spent"
|
629 |
-
]
|
630 |
-
},
|
631 |
-
{
|
632 |
-
"cell_type": "code",
|
633 |
-
"execution_count": 15,
|
634 |
-
"id": "16815445-3079-43da-b14e-b54176a07a62",
|
635 |
-
"metadata": {},
|
636 |
-
"outputs": [
|
637 |
-
{
|
638 |
-
"name": "stdout",
|
639 |
-
"output_type": "stream",
|
640 |
-
"text": [
|
641 |
-
"https://ui.endpoints.huggingface.co/HF-test-lab/endpoints/boru-jina-embeddings-demo\n"
|
642 |
-
]
|
643 |
-
}
|
644 |
-
],
|
645 |
-
"source": [
|
646 |
-
"dashboard_url = f'https://ui.endpoints.huggingface.co/{username}/endpoints/{endpoint_name}'\n",
|
647 |
-
"print(dashboard_url)"
|
648 |
-
]
|
649 |
-
},
|
650 |
-
{
|
651 |
-
"cell_type": "code",
|
652 |
-
"execution_count": 16,
|
653 |
-
"id": "81096c6f-d12f-4781-84ec-9066cfa465b3",
|
654 |
-
"metadata": {},
|
655 |
-
"outputs": [
|
656 |
-
{
|
657 |
-
"name": "stdin",
|
658 |
-
"output_type": "stream",
|
659 |
-
"text": [
|
660 |
-
"Hit enter to continue with the notebook \n"
|
661 |
-
]
|
662 |
-
},
|
663 |
-
{
|
664 |
-
"data": {
|
665 |
-
"text/plain": [
|
666 |
-
"''"
|
667 |
-
]
|
668 |
-
},
|
669 |
-
"execution_count": 16,
|
670 |
-
"metadata": {},
|
671 |
-
"output_type": "execute_result"
|
672 |
-
}
|
673 |
-
],
|
674 |
-
"source": [
|
675 |
-
"input(\"Hit enter to continue with the notebook\")"
|
676 |
-
]
|
677 |
-
},
|
678 |
-
{
|
679 |
-
"cell_type": "markdown",
|
680 |
-
"id": "847d524e-9aa6-4a6f-a275-8a552e289818",
|
681 |
-
"metadata": {},
|
682 |
-
"source": [
|
683 |
-
"We can see that it only took `$0.71` to pay for this!\n",
|
684 |
-
"\n",
|
685 |
-
"![Cost](https://huggingface.co/spaces/derek-thomas/processing-bestofredditorupdates/resolve/main/media/automatic-embeddings-cost.png)"
|
686 |
-
]
|
687 |
-
},
|
688 |
-
{
|
689 |
-
"cell_type": "markdown",
|
690 |
-
"id": "b953d5be-2494-4ff8-be42-9daf00c99c41",
|
691 |
-
"metadata": {},
|
692 |
-
"source": [
|
693 |
-
"# Delete Endpoint\n",
|
694 |
-
"We should see a `200` if everything went correctly."
|
695 |
-
]
|
696 |
-
},
|
697 |
-
{
|
698 |
-
"cell_type": "code",
|
699 |
-
"execution_count": 17,
|
700 |
-
"id": "c310c0f3-6f12-4d5c-838b-3a4c1f2e54ad",
|
701 |
-
"metadata": {
|
702 |
-
"tags": []
|
703 |
-
},
|
704 |
-
"outputs": [
|
705 |
-
{
|
706 |
-
"name": "stdout",
|
707 |
-
"output_type": "stream",
|
708 |
-
"text": [
|
709 |
-
"200\n"
|
710 |
-
]
|
711 |
-
}
|
712 |
-
],
|
713 |
-
"source": [
|
714 |
-
"response = requests.delete(endpoint_url, headers=headers)\n",
|
715 |
-
"\n",
|
716 |
-
"print(response.status_code)"
|
717 |
-
]
|
718 |
-
},
|
719 |
-
{
|
720 |
-
"cell_type": "code",
|
721 |
-
"execution_count": null,
|
722 |
-
"id": "5db1b1c3-16c3-403a-9472-a97e730826d5",
|
723 |
-
"metadata": {},
|
724 |
-
"outputs": [],
|
725 |
-
"source": []
|
726 |
-
}
|
727 |
-
],
|
728 |
-
"metadata": {
|
729 |
-
"kernelspec": {
|
730 |
-
"display_name": "Python 3 (ipykernel)",
|
731 |
-
"language": "python",
|
732 |
-
"name": "python3"
|
733 |
-
},
|
734 |
-
"language_info": {
|
735 |
-
"codemirror_mode": {
|
736 |
-
"name": "ipython",
|
737 |
-
"version": 3
|
738 |
-
},
|
739 |
-
"file_extension": ".py",
|
740 |
-
"mimetype": "text/x-python",
|
741 |
-
"name": "python",
|
742 |
-
"nbconvert_exporter": "python",
|
743 |
-
"pygments_lexer": "ipython3",
|
744 |
-
"version": "3.10.8"
|
745 |
-
}
|
746 |
-
},
|
747 |
-
"nbformat": 4,
|
748 |
-
"nbformat_minor": 5
|
749 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
aiohttp==3.8.3
|
2 |
datasets==2.14.6
|
3 |
-
huggingface-hub==0.
|
4 |
pandas==1.5.3
|
5 |
requests==2.31.0
|
6 |
tqdm==4.66.1
|
|
|
1 |
aiohttp==3.8.3
|
2 |
datasets==2.14.6
|
3 |
+
huggingface-hub==0.19.4
|
4 |
pandas==1.5.3
|
5 |
requests==2.31.0
|
6 |
tqdm==4.66.1
|
src/my_logger.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
|
4 |
+
def setup_logger(name: str):
|
5 |
+
logger = logging.getLogger(name)
|
6 |
+
logger.setLevel(logging.DEBUG)
|
7 |
+
|
8 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
9 |
+
|
10 |
+
# Create a file handler to write logs to a file
|
11 |
+
file_handler = logging.FileHandler('mylog.log')
|
12 |
+
file_handler.setLevel(logging.DEBUG)
|
13 |
+
file_handler.setFormatter(formatter)
|
14 |
+
logger.addHandler(file_handler)
|
15 |
+
|
16 |
+
# Create a stream handler to write logs to the console
|
17 |
+
stream_handler = logging.StreamHandler()
|
18 |
+
stream_handler.setLevel(logging.DEBUG)
|
19 |
+
stream_handler.setFormatter(formatter)
|
20 |
+
logger.addHandler(stream_handler)
|
21 |
+
|
22 |
+
return logger
|
src/utilities.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from datasets import Dataset, DownloadMode, load_dataset
|
6 |
+
from gradio_client import Client
|
7 |
+
|
8 |
+
from src.my_logger import setup_logger
|
9 |
+
|
10 |
+
SUBREDDIT = os.environ["SUBREDDIT"]
|
11 |
+
USERNAME = os.environ["USERNAME"]
|
12 |
+
OG_DATASET= f"{USERNAME}/dataset-creator-reddit-{SUBREDDIT}"
|
13 |
+
PROCESSED_DATASET= os.environ['PROCESSED_DATASET']
|
14 |
+
|
15 |
+
client = Client("derek-thomas/nomic-embeddings")
|
16 |
+
logger = setup_logger(__name__)
|
17 |
+
|
18 |
+
|
19 |
+
async def load_datasets():
|
20 |
+
# Get latest datasets locally
|
21 |
+
logger.debug(f"Trying to download {PROCESSED_DATASET}")
|
22 |
+
dataset = load_dataset(PROCESSED_DATASET, download_mode=DownloadMode.FORCE_REDOWNLOAD)
|
23 |
+
logger.debug(f"Loaded {PROCESSED_DATASET}")
|
24 |
+
|
25 |
+
logger.debug(f"Trying to download {OG_DATASET}")
|
26 |
+
original_dataset = load_dataset(OG_DATASET, download_mode=DownloadMode.FORCE_REDOWNLOAD)
|
27 |
+
logger.debug(f"Loaded {OG_DATASET}")
|
28 |
+
return dataset, original_dataset
|
29 |
+
|
30 |
+
|
31 |
+
def merge_and_update_datasets(dataset, original_dataset):
|
32 |
+
# Merge and figure out which rows need to be updated with embeddings
|
33 |
+
odf = original_dataset['train'].to_pandas()
|
34 |
+
df = dataset['train'].to_pandas()
|
35 |
+
|
36 |
+
# Step 1: Merge df onto odf
|
37 |
+
# We'll bring in 'content' and 'embedding' from df to compare and possibly update 'embedding'
|
38 |
+
merged_df = pd.merge(odf, df[['id', 'content', 'embedding']], on='id', how='left', suffixes=('_odf', ''))
|
39 |
+
updated_rows = len(merged_df[merged_df.content != merged_df.content_odf])
|
40 |
+
|
41 |
+
# Step 2: Compare 'content' from odf and df, update 'embedding' if they differ
|
42 |
+
merged_df['embedding'] = np.where(merged_df['content_odf'] != merged_df['content'], None, merged_df['embedding'])
|
43 |
+
|
44 |
+
# Step 3: Cleanup - keep only the necessary columns.
|
45 |
+
# Assuming you want to keep 'content' from 'odf' and the updated 'embedding', and drop the rest
|
46 |
+
merged_df = merged_df.drop(columns=['content', 'new', 'updated']) # Update columns to match df
|
47 |
+
merged_df.rename(columns={'content_odf': 'content'}, inplace=True) # Rename 'content_odf' back to 'content'
|
48 |
+
|
49 |
+
logger.info(f"Updating {updated_rows} rows...")
|
50 |
+
# Iterate over the DataFrame rows where 'embedding' is None
|
51 |
+
for index, row in merged_df[merged_df['embedding'].isnull()].iterrows():
|
52 |
+
# Update 'embedding' for the current row using our function
|
53 |
+
merged_df.at[index, 'embedding'] = update_embeddings(row['content'])
|
54 |
+
|
55 |
+
dataset['train'] = Dataset.from_pandas(merged_df)
|
56 |
+
logger.info(f"Updated {updated_rows} rows")
|
57 |
+
return dataset
|
58 |
+
|
59 |
+
|
60 |
+
def update_embeddings(content):
|
61 |
+
embedding = client.predict(content, api_name="/embed")
|
62 |
+
return np.array(embedding)
|
src/visualize_logs.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bs4 import BeautifulSoup
|
2 |
+
from rich.console import Console
|
3 |
+
from rich.syntax import Syntax
|
4 |
+
|
5 |
+
|
6 |
+
def log_file_to_html_string():
|
7 |
+
log_file = "mylog.log"
|
8 |
+
num_lines_visualize = 50
|
9 |
+
|
10 |
+
console = Console(record=True, width=150, style="#272822")
|
11 |
+
with open(log_file, "rt") as f:
|
12 |
+
# Seek to the end of the file minus 300 lines
|
13 |
+
# Read the last 300 lines of the file
|
14 |
+
lines = f.readlines()
|
15 |
+
lines = lines[-num_lines_visualize:]
|
16 |
+
|
17 |
+
# Syntax-highlight the last 300 lines of the file using the Python lexer and Monokai style
|
18 |
+
output = "".join(lines)
|
19 |
+
syntax = Syntax(output, "python", theme="monokai", word_wrap=True)
|
20 |
+
|
21 |
+
console.print(syntax);
|
22 |
+
html_content = console.export_html(inline_styles=True)
|
23 |
+
|
24 |
+
# Parse the HTML content using BeautifulSoup
|
25 |
+
soup = BeautifulSoup(html_content, 'lxml')
|
26 |
+
|
27 |
+
# Modify the <pre> tag
|
28 |
+
pre_tag = soup.pre
|
29 |
+
pre_tag['class'] = 'scrollable'
|
30 |
+
del pre_tag['style']
|
31 |
+
|
32 |
+
# Add your custom styles and the .scrollable CSS to the <style> tag
|
33 |
+
style_tag = soup.style
|
34 |
+
style_content = """
|
35 |
+
pre, code {
|
36 |
+
background-color: #272822;
|
37 |
+
}
|
38 |
+
.scrollable {
|
39 |
+
font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace;
|
40 |
+
height: 500px;
|
41 |
+
overflow: auto;
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
style_tag.append(style_content)
|
45 |
+
|
46 |
+
return soup.prettify()
|