derek-thomas's picture
derek-thomas HF staff
Adding topic model
8f38904
# https://atlas.nomic.ai/data/derek2/boru-subreddit-neural-search/map
import os
import re
import time
import markdown
import nomic
import numpy as np
import pandas as pd
from nomic import atlas
from nomic.dataset import AtlasClass
from nomic.data_inference import NomicTopicOptions
from src.my_logger import setup_logger
NOMIC_KEY = os.getenv('NOMIC_KEY')
nomic.login(NOMIC_KEY)
sleep_time = int(os.getenv('NOMIC_SLEEP_TIME', 60))
logger = setup_logger(__name__)
# Regex to extract subreddit
subreddit_re = re.compile(r'[^e]r/(\w+)')
def count_words(text):
words = text.split()
return len(words)
def preprocess_markdown(text):
# Inline CSS for spoilers
spoiler_style = 'background-color: black; color: black;'
hover_style = 'color: inherit;' # Assuming you want the text to be visible on hover
# Replace Reddit spoiler tags with an HTML span with inline styles
text = re.sub(
r'\>\!(.*?)\!\<',
r'<span class="spoiler" style="' + spoiler_style + '" onmouseover="this.style.color=\'' + hover_style + '\'" onmouseout="this.style.color=\'black\'">\1</span>',
text
)
return text
def convert_markdown_to_html(text):
processed_text = preprocess_markdown(text)
html = markdown.markdown(processed_text, extensions=['mdx_linkify'])
return html
def extract_subreddit(text):
match = subreddit_re.search(text)
if match:
return 'r/' + match.group(1)
return ''
def delete_old_nomic():
logger.info(f"Trying to delete old version of nomic Atlas...")
try:
ac = AtlasClass()
atlas_id = ac._get_dataset_by_slug_identifier("derek2/boru-subreddit-neural-search")['id']
ac._delete_project_by_id(atlas_id)
logger.info(f"Succeeded in deleting old version of nomic Atlas.")
# Get sleep time from environment variable
logger.info(f"Sleeping for {sleep_time}s to wait for old version deletion on the server-side")
time.sleep(sleep_time)
except Exception as e:
logger.info(f"Failed to delete old version of nomic Atlas. Error: {e}")
def preprocess_markdown(text):
# Inline CSS for spoilers
spoiler_style = 'background-color: black; color: black;'
hover_style = 'color: inherit;' # Assuming you want the text to be visible on hover
# Replace Reddit spoiler tags >!spoiler!< with an HTML span with inline styles
text = re.sub(
r'\>\!(.*?)\<\!',
r'<span class="spoiler" style="' + spoiler_style + '" onmouseover="this.style.color=\'' + hover_style + '\'" onmouseout="this.style.color=\'black\'">\1</span>',
text
)
return text
def build_nomic(dataset):
df = dataset['train'].to_pandas()
# For nomig: filter out rows that contain 'nsfw' in specified text columns or where 'nsfw' column is True
df = df[~df[['content', 'title', 'flair', 'permalink']].apply(
lambda x: x.str.contains('nsfw', case=False, na=False)).any(axis=1) & ~df['nsfw']]
non_embedding_columns = ['date_utc', 'title', 'flair', 'poster', 'url', 'id', 'word_count',
'score', 'score_percentile', 'html_content', 'subreddit']
# Calculate the 0th, 10th, 20th, ..., 90th percentiles for the 'score' column
percentiles = df['score'].quantile([0, .1, .2, .3, .4, .5, .6, .7, .8, .9]).tolist()
# Ensure the bins are unique and include the maximum score
bins = sorted(set(percentiles + [df['score'].max()]))
# Define the labels for the percentile ranges
# The number of labels should be one less than the number of bins
labels = [int(i * 10) for i in range(len(bins) - 1)]
# Add a 'percentile_ranges' column to the DataFrame
# This assigns each score to its corresponding percentile range
df['score_percentile'] = pd.cut(df['score'], bins=bins, labels=labels, include_lowest=True)
df['word_count'] = df['content'].apply(count_words)
df['url'] = 'https://www.reddit.com' + df['permalink']
df['html_content'] = df['content'].apply(convert_markdown_to_html)
# Apply the function
df['subreddit'] = df['content'].apply(extract_subreddit)
topic_options = NomicTopicOptions(build_topic_model=True)
topic_options.topic_label_field = 'html_content'
delete_old_nomic()
# Create Atlas project
logger.info(f"Trying to create new version of Atlas...")
project = atlas.map_data(embeddings=np.stack(df['embedding'].values),
data=df[non_embedding_columns].to_dict(orient='records'),
id_field='id',
identifier='BORU Subreddit Neural Search',
topic_model=topic_options
)
logger.info(f"Succeeded in creating new version of nomic Atlas: {project.slug}")