# KAGGLE SPECIFIC: This script is used to make training compatible with Kaggle's notebook environment. import torch import os def load_and_save_checkpoint(input_filename, output_filename, device): if os.path.isfile(input_filename): print(f"Loading checkpoint '{input_filename}'") checkpoint = torch.load(input_filename, map_location=device) # Extract only the necessary state save_state = { 'epoch': checkpoint['epoch'], 'generator_state_dict': checkpoint['generator_state_dict'], 'discriminator_state_dict': checkpoint['discriminator_state_dict'], 'optimizerG_state_dict': checkpoint['optimizerG_state_dict'], 'optimizerD_state_dict': checkpoint['optimizerD_state_dict'], } # Save the checkpoint torch.save(save_state, output_filename) print(f"Saved checkpoint to '{output_filename}'") else: print(f"No checkpoint found at '{input_filename}'") if __name__ == "__main__": device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") input_checkpoint = "checkpoints/latest_checkpoint.pth.tar" output_checkpoint = "checkpoints/converted_checkpoint.pth.tar" load_and_save_checkpoint(input_checkpoint, output_checkpoint, device)