pix2pixcolorizer / train.py
Rohil Bansal
huggingface spaces commit.
02f3f24
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision.utils import make_grid
import mlflow
import matplotlib.pyplot as plt
from tqdm import tqdm
import numpy as np
from skimage.color import lab2rgb, rgb2lab
import argparse
from itertools import islice
from PIL import Image
import torchvision.transforms as transforms
from data_ingestion import ColorizeIterableDataset, create_dataloaders
from model import Generator, Discriminator, init_weights
EXPERIMENT_NAME = "Colorizer_Experiment"
def setup_mlflow():
experiment = mlflow.get_experiment_by_name(EXPERIMENT_NAME)
if experiment is None:
experiment_id = mlflow.create_experiment(EXPERIMENT_NAME)
else:
experiment_id = experiment.experiment_id
return experiment_id
def lab_to_rgb(L, ab):
"""Convert L and ab channels to RGB image"""
L = (L + 1.) * 50.
ab = ab * 128.
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
rgb_imgs = []
for img in Lab:
img_rgb = lab2rgb(img)
rgb_imgs.append(img_rgb)
return np.stack(rgb_imgs, axis=0)
def preprocess_image(image_path):
img = Image.open(image_path).convert('RGB')
img = img.resize((256, 256)) # Resize to a consistent size
img_lab = rgb2lab(img)
img_lab = (img_lab + [0, 128, 128]) / [100, 255, 255] # Normalize LAB values
return img_lab[:,:,0], img_lab[:,:,1:]
def visualize_results(epoch, generator, train_loader, device):
generator.eval()
with torch.no_grad():
for inputs, real_AB in train_loader:
inputs, real_AB = inputs.to(device), real_AB.to(device)
fake_AB = generator(inputs)
fake_rgb = lab_to_rgb(inputs.cpu(), fake_AB.cpu())
real_rgb = lab_to_rgb(inputs.cpu(), real_AB.cpu())
img_grid = make_grid(torch.from_numpy(np.concatenate([real_rgb, fake_rgb], axis=3)).permute(0, 3, 1, 2), normalize=True, nrow=4)
plt.figure(figsize=(15, 15))
plt.imshow(img_grid.permute(1, 2, 0).cpu())
plt.axis('off')
plt.title(f'Epoch {epoch}')
plt.savefig(f'results/epoch_{epoch}.png')
mlflow.log_artifact(f'results/epoch_{epoch}.png')
plt.close()
break # Only visualize one batch
generator.train()
def save_checkpoint(state, filename="checkpoint.pth.tar"):
torch.save(state, filename)
mlflow.log_artifact(filename)
def load_checkpoint(filename, generator, discriminator, optimizerG, optimizerD):
if os.path.isfile(filename):
print(f"Loading checkpoint '{filename}'")
checkpoint = torch.load(filename)
start_epoch = checkpoint['epoch'] + 1
generator.load_state_dict(checkpoint['generator_state_dict'])
discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
optimizerG.load_state_dict(checkpoint['optimizerG_state_dict'])
optimizerD.load_state_dict(checkpoint['optimizerD_state_dict'])
print(f"Loaded checkpoint '{filename}' (epoch {checkpoint['epoch']})")
return start_epoch
else:
print(f"No checkpoint found at '{filename}'")
return 0
def train(generator, discriminator, train_loader, num_epochs, device, lr=0.0002, beta1=0.5):
criterion = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()
optimizerG = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerD = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
checkpoint_dir = "checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
os.makedirs("results", exist_ok=True)
checkpoint_path = os.path.join(checkpoint_dir, "latest_checkpoint.pth.tar")
start_epoch = load_checkpoint(checkpoint_path, generator, discriminator, optimizerG, optimizerD)
experiment_id = setup_mlflow()
with mlflow.start_run(experiment_id=experiment_id, run_name="training_run") as run:
try:
for epoch in range(start_epoch, num_epochs):
generator.train()
discriminator.train()
# Use a fixed number of iterations per epoch
num_iterations = 1000
pbar = tqdm(enumerate(islice(train_loader, num_iterations)), total=num_iterations, desc=f"Epoch {epoch+1}/{num_epochs}")
for i, (real_L, real_AB) in pbar:
real_L, real_AB = real_L.to(device), real_AB.to(device)
batch_size = real_L.size(0)
# Train Discriminator
optimizerD.zero_grad()
fake_AB = generator(real_L)
fake_LAB = torch.cat([real_L, fake_AB], dim=1)
real_LAB = torch.cat([real_L, real_AB], dim=1)
pred_fake = discriminator(fake_LAB.detach())
loss_D_fake = criterion(pred_fake, torch.zeros_like(pred_fake))
pred_real = discriminator(real_LAB)
loss_D_real = criterion(pred_real, torch.ones_like(pred_real))
loss_D = (loss_D_fake + loss_D_real) * 0.5
loss_D.backward()
optimizerD.step()
# Train Generator
optimizerG.zero_grad()
fake_AB = generator(real_L)
fake_LAB = torch.cat([real_L, fake_AB], dim=1)
pred_fake = discriminator(fake_LAB)
loss_G_GAN = criterion(pred_fake, torch.ones_like(pred_fake))
loss_G_L1 = l1_loss(fake_AB, real_AB) * 100 # L1 loss weight
loss_G = loss_G_GAN + loss_G_L1
loss_G.backward()
optimizerG.step()
pbar.set_postfix({
'D_loss': loss_D.item(),
'G_loss': loss_G.item(),
'G_L1': loss_G_L1.item()
})
mlflow.log_metrics({
"D_loss": loss_D.item(),
"G_loss": loss_G.item(),
"G_L1_loss": loss_G_L1.item()
}, step=epoch * num_iterations + i)
visualize_results(epoch, generator, train_loader, device)
checkpoint = {
'epoch': epoch,
'generator_state_dict': generator.state_dict(),
'discriminator_state_dict': discriminator.state_dict(),
'optimizerG_state_dict': optimizerG.state_dict(),
'optimizerD_state_dict': optimizerD.state_dict(),
}
save_checkpoint(checkpoint, filename=checkpoint_path)
print("Training completed successfully.")
# Log the generator model
mlflow.pytorch.log_model(generator, "generator_model")
# Register the model
model_uri = f"runs:/{run.info.run_id}/generator_model"
mlflow.register_model(model_uri, "colorizer_generator")
return run.info.run_id
except Exception as e:
print(f"Error during training: {str(e)}")
mlflow.log_param("error", str(e))
return None
def test_training(generator, discriminator, train_loader, device):
print("Testing training process...")
try:
train(generator, discriminator, train_loader, num_epochs=1, device=device)
print("Training process test passed.")
return True
except Exception as e:
print(f"Training process test failed: {str(e)}")
return False
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train Colorizer model")
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
help="Device to use for training (cuda/cpu)")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size for training")
parser.add_argument("--num_epochs", type=int, default=50, help="Number of epochs to train")
parser.add_argument("--test", action="store_true", help="Run in test mode")
args = parser.parse_args()
device = torch.device(args.device)
print(f"Using device: {device}")
try:
train_loader = create_dataloaders(batch_size=args.batch_size)
generator = Generator().to(device)
discriminator = Discriminator().to(device)
generator.apply(init_weights)
discriminator.apply(init_weights)
if args.test:
if test_training(generator, discriminator, train_loader, device):
print("All tests passed.")
else:
print("Tests failed.")
else:
run_id = train(generator, discriminator, train_loader, num_epochs=args.num_epochs, device=device)
if run_id:
print(f"Training completed. Run ID: {run_id}")
# Save the run ID to a file for easy access by the inference script
with open("latest_run_id.txt", "w") as f:
f.write(run_id)
else:
print("Training failed.")
except Exception as e:
print(f"Critical error in main execution: {str(e)}")