|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import json |
|
import uuid |
|
from PIL import Image |
|
from bs4 import BeautifulSoup |
|
import requests |
|
import random |
|
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer |
|
from threading import Thread |
|
import re |
|
import time |
|
import torch |
|
import cv2 |
|
|
|
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf" |
|
|
|
processor = LlavaProcessor.from_pretrained(model_id) |
|
|
|
model = LlavaForConditionalGeneration.from_pretrained(model_id) |
|
model.to("cpu") |
|
|
|
|
|
def llava(message, history): |
|
if message["files"]: |
|
image = message["files"][0] |
|
else: |
|
for hist in history: |
|
if isinstance(hist[0], tuple): |
|
image = hist[0][0] |
|
|
|
txt = message["text"] |
|
|
|
gr.Info("Analyzing image") |
|
image = Image.open(image).convert("RGB") |
|
prompt = f"<|im_start|>user <image>\n{txt}<|im_end|><|im_start|>assistant" |
|
|
|
inputs = processor(prompt, image, return_tensors="pt") |
|
|
|
|
|
return {"text": txt, "files": [image]} |
|
|
|
|
|
def extract_text_from_webpage(html_content): |
|
soup = BeautifulSoup(html_content, 'html.parser') |
|
for tag in soup(["script", "style", "header", "footer"]): |
|
tag.extract() |
|
return soup.get_text(strip=True) |
|
|
|
def search(query): |
|
term = query |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
with requests.Session() as session: |
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, |
|
params={"q": term, "num": 3, "udm": 14}, |
|
timeout=5, |
|
verify=None, |
|
) |
|
resp.raise_for_status() |
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
link = link["href"] |
|
try: |
|
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] |
|
all_results.append({"link": link, "text": visible_text}) |
|
except requests.exceptions.RequestException: |
|
all_results.append({"link": link, "text": None}) |
|
return all_results |
|
|
|
|
|
client_gemma = InferenceClient("google/gemma-1.1-7b-it") |
|
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") |
|
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") |
|
|
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import json |
|
import uuid |
|
from PIL import Image |
|
from bs4 import BeautifulSoup |
|
import requests |
|
import random |
|
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer |
|
from threading import Thread |
|
import re |
|
import time |
|
import torch |
|
import cv2 |
|
|
|
model_id = "llava-hf/llava-interleave-qwen-0.5b-hf" |
|
|
|
processor = LlavaProcessor.from_pretrained(model_id) |
|
|
|
model = LlavaForConditionalGeneration.from_pretrained(model_id) |
|
model.to("cpu") |
|
|
|
|
|
def llava(message, history): |
|
if message["files"]: |
|
image = message["files"][0] |
|
else: |
|
for hist in history: |
|
if isinstance(hist[0], tuple): |
|
image = hist[0][0] |
|
|
|
txt = message["text"] |
|
|
|
gr.Info("Analyzing image") |
|
image = Image.open(image).convert("RGB") |
|
prompt = f"<|im_start|>user <image>\n{txt}<|im_end|><|im_start|>assistant" |
|
|
|
inputs = processor(prompt, image, return_tensors="pt") |
|
|
|
|
|
return {"text": txt, "files": [image]} |
|
|
|
|
|
def extract_text_from_webpage(html_content): |
|
soup = BeautifulSoup(html_content, 'html.parser') |
|
for tag in soup(["script", "style", "header", "footer"]): |
|
tag.extract() |
|
return soup.get_text(strip=True) |
|
|
|
def search(query): |
|
term = query |
|
start = 0 |
|
all_results = [] |
|
max_chars_per_page = 8000 |
|
with requests.Session() as session: |
|
resp = session.get( |
|
url="https://www.google.com/search", |
|
headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, |
|
params={"q": term, "num": 3, "udm": 14}, |
|
timeout=5, |
|
verify=None, |
|
) |
|
resp.raise_for_status() |
|
soup = BeautifulSoup(resp.text, "html.parser") |
|
result_block = soup.find_all("div", attrs={"class": "g"}) |
|
for result in result_block: |
|
link = result.find("a", href=True) |
|
link = link["href"] |
|
try: |
|
webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False) |
|
webpage.raise_for_status() |
|
visible_text = extract_text_from_webpage(webpage.text) |
|
if len(visible_text) > max_chars_per_page: |
|
visible_text = visible_text[:max_chars_per_page] |
|
all_results.append({"link": link, "text": visible_text}) |
|
except requests.exceptions.RequestException: |
|
all_results.append({"link": link, "text": None}) |
|
return all_results |
|
|
|
|
|
client_gemma = InferenceClient("google/gemma-1.1-7b-it") |
|
client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO") |
|
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") |
|
|
|
|
|
def respond(message, history): |
|
func_caller = [] |
|
|
|
user_prompt = message |
|
|
|
if message.get("files"): |
|
inputs = llava(message, history) |
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True}) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
yield buffer |
|
else: |
|
functions_metadata = [ |
|
{"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}}, |
|
{"type": "function", "function": {"name": "general_query", "description": "Reply general query of USER", "parameters": {"type": "object", "properties": {"prompt": {"type": "string", "description": "A detailed prompt"}}, "required": ["prompt"]}}}, |
|
{"type": "function", "function": {"name": "image_generation", "description": "Generate image for user", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "image generation prompt"}, "number_of_image": {"type": "integer", "description": "number of images to generate"}}, "required": ["query"]}}}, |
|
{"type": "function", "function": {"name": "image_qna", "description": "Answer question asked by user related to image", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "Question by user"}}, "required": ["query"]}}}, |
|
] |
|
|
|
message_text = message["text"] |
|
func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful AI assistant for a discord server called Stars Kingdom, your job is to have fun help users and listen to what they say or want you to act. You have been created by the discord server owner named Star. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_2": "value_2", ... }} }} </functioncall> [USER] {message_text}'}) |
|
|
|
response = client_gemma.chat_completion(func_caller, max_tokens=150) |
|
response = str(response) |
|
try: |
|
response = response[int(response.find("{")):int(response.index("</"))] |
|
except: |
|
print("An error occurred") |
|
response = response.replace("\\n", "") |
|
response = response.replace("\\'", "'") |
|
response = response.replace('\\"', '"') |
|
print(f"\n{response}") |
|
|
|
func_caller.append({"role": "assistant", "content": f"<functioncall>{response}</functioncall>"}) |
|
|
|
try: |
|
json_data = json.loads(str(response)) |
|
if json_data["name"] == "web_search": |
|
query = json_data["arguments"]["query"] |
|
gr.Info("Searching Web") |
|
web_results = search(query) |
|
gr.Info("Extracting relevant Info") |
|
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results]) |
|
messages = f"<|im_start|>system\nYou are a helpful assistant made by Star. You are provided with WEB results from which you can find informations to answer users query in a structured and better way. Only respond with what’s important!<|im_end|>" |
|
for msg in history: |
|
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>" |
|
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>" |
|
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>web_result\n{web2}<|im_end|>\n<|im_start|>assistant\n" |
|
stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
if not response.token.text == "<|im_end|>": |
|
output += response.token.text |
|
yield output |
|
elif json_data["name"] == "image_generation": |
|
query = json_data["arguments"]["query"] |
|
gr.Info("Generating Image, Please wait 10 sec...") |
|
seed = random.randint(1, 99999) |
|
image = f"![](https://image.pollinations.ai/prompt/{message_text}{query}?seed={seed}&nologo=True)" |
|
image = image.replace("\\n", "") |
|
image = image.replace(" ", "%20") |
|
yield image |
|
time.sleep(8) |
|
gr.Info("We are going to Update Our Image Generation Engine to more powerful ones in Next Update. ThankYou") |
|
elif json_data["name"] == "image_qna": |
|
inputs = llava(message, history) |
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, **{"skip_special_tokens": True}) |
|
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) |
|
|
|
thread = Thread(target=model.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
buffer = "" |
|
for new_text in streamer: |
|
buffer += new_text |
|
yield buffer |
|
else: |
|
|
|
messages = f"<|im_start|>system\nYou are a helpful assistant made by Star.<|im_end|>" |
|
for msg in history: |
|
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>" |
|
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>" |
|
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n" |
|
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
if not response.token.text == "<|eot_id|>": |
|
output += response.token.text |
|
yield output |
|
except: |
|
messages = f"<|im_start|>system\nYou are a helpful assistant made by Star. You answer users' queries like a human friend.<|im_end|>" |
|
for msg in history: |
|
messages += f"\n<|im_start|>user\n{str(msg[0])}<|im_end|>" |
|
messages += f"\n<|im_start|>assistant\n{str(msg[1])}<|im_end|>" |
|
messages += f"\n<|im_start|>user\n{message_text}<|im_end|>\n<|im_start|>assistant\n" |
|
stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
for response in stream: |
|
if not response.token.text == "<|eot_id|>": |
|
output += response.token.text |
|
yield output |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"), |
|
description="AI assistant for Stars Kingdom", |
|
textbox=gr.MultimodalTextbox(), |
|
multimodal=True, |
|
concurrency_limit=200, |
|
examples=[ |
|
{"text": "What can I wear with a yellow Kurta?",}, |
|
{"text": "What's the preferred shirt color for an interview?",}, |
|
{"text": "How can I dress more smartly?",}, |
|
{"text": "Tell about some good accessories for a traditional Indian wedding",}, |
|
{"text": "What's the color of the frock in the given image?", "files": ["./frock.png"]}, |
|
], |
|
cache_examples=False, |
|
) |
|
|
|
demo.launch(share=True) |