Spaces:
Sleeping
Sleeping
File size: 8,148 Bytes
5a486d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import pdb
from os import path
import torch
import torch.distributed as dist
import torch.autograd as autograd
import torch.cuda.comm as comm
from torch.autograd.function import once_differentiable
from torch.utils.cpp_extension import load
_src_path = path.join(path.dirname(path.abspath(__file__)), "src")
_backend = load(name="inplace_abn",
extra_cflags=["-O3"],
sources=[path.join(_src_path, f) for f in [
"inplace_abn.cpp",
"inplace_abn_cpu.cpp",
"inplace_abn_cuda.cu",
"inplace_abn_cuda_half.cu"
]],
extra_cuda_cflags=["--expt-extended-lambda"])
# Activation names
ACT_RELU = "relu"
ACT_LEAKY_RELU = "leaky_relu"
ACT_ELU = "elu"
ACT_NONE = "none"
def _check(fn, *args, **kwargs):
success = fn(*args, **kwargs)
if not success:
raise RuntimeError("CUDA Error encountered in {}".format(fn))
def _broadcast_shape(x):
out_size = []
for i, s in enumerate(x.size()):
if i != 1:
out_size.append(1)
else:
out_size.append(s)
return out_size
def _reduce(x):
if len(x.size()) == 2:
return x.sum(dim=0)
else:
n, c = x.size()[0:2]
return x.contiguous().view((n, c, -1)).sum(2).sum(0)
def _count_samples(x):
count = 1
for i, s in enumerate(x.size()):
if i != 1:
count *= s
return count
def _act_forward(ctx, x):
if ctx.activation == ACT_LEAKY_RELU:
_backend.leaky_relu_forward(x, ctx.slope)
elif ctx.activation == ACT_ELU:
_backend.elu_forward(x)
elif ctx.activation == ACT_NONE:
pass
def _act_backward(ctx, x, dx):
if ctx.activation == ACT_LEAKY_RELU:
_backend.leaky_relu_backward(x, dx, ctx.slope)
elif ctx.activation == ACT_ELU:
_backend.elu_backward(x, dx)
elif ctx.activation == ACT_NONE:
pass
class InPlaceABN(autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, running_mean, running_var,
training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01):
# Save context
ctx.training = training
ctx.momentum = momentum
ctx.eps = eps
ctx.activation = activation
ctx.slope = slope
ctx.affine = weight is not None and bias is not None
# Prepare inputs
count = _count_samples(x)
x = x.contiguous()
weight = weight.contiguous() if ctx.affine else x.new_empty(0)
bias = bias.contiguous() if ctx.affine else x.new_empty(0)
if ctx.training:
mean, var = _backend.mean_var(x)
# Update running stats
running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean)
running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * count / (count - 1))
# Mark in-place modified tensors
ctx.mark_dirty(x, running_mean, running_var)
else:
mean, var = running_mean.contiguous(), running_var.contiguous()
ctx.mark_dirty(x)
# BN forward + activation
_backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps)
_act_forward(ctx, x)
# Output
ctx.var = var
ctx.save_for_backward(x, var, weight, bias)
ctx.mark_non_differentiable(running_mean, running_var)
return x, running_mean, running_var
@staticmethod
@once_differentiable
def backward(ctx, dz, _drunning_mean, _drunning_var):
z, var, weight, bias = ctx.saved_tensors
dz = dz.contiguous()
# Undo activation
_act_backward(ctx, z, dz)
if ctx.training:
edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps)
else:
# TODO: implement simplified CUDA backward for inference mode
edz = dz.new_zeros(dz.size(1))
eydz = dz.new_zeros(dz.size(1))
dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps)
# dweight = eydz * weight.sign() if ctx.affine else None
dweight = eydz if ctx.affine else None
if dweight is not None:
dweight[weight < 0] *= -1
dbias = edz if ctx.affine else None
return dx, dweight, dbias, None, None, None, None, None, None, None
class InPlaceABNSync(autograd.Function):
@classmethod
def forward(cls, ctx, x, weight, bias, running_mean, running_var,
training=True, momentum=0.1, eps=1e-05, activation=ACT_LEAKY_RELU, slope=0.01, equal_batches=True):
# Save context
ctx.training = training
ctx.momentum = momentum
ctx.eps = eps
ctx.activation = activation
ctx.slope = slope
ctx.affine = weight is not None and bias is not None
# Prepare inputs
ctx.world_size = dist.get_world_size() if dist.is_initialized() else 1
# count = _count_samples(x)
batch_size = x.new_tensor([x.shape[0]], dtype=torch.long)
x = x.contiguous()
weight = weight.contiguous() if ctx.affine else x.new_empty(0)
bias = bias.contiguous() if ctx.affine else x.new_empty(0)
if ctx.training:
mean, var = _backend.mean_var(x)
if ctx.world_size > 1:
# get global batch size
if equal_batches:
batch_size *= ctx.world_size
else:
dist.all_reduce(batch_size, dist.ReduceOp.SUM)
ctx.factor = x.shape[0] / float(batch_size.item())
mean_all = mean.clone() * ctx.factor
dist.all_reduce(mean_all, dist.ReduceOp.SUM)
var_all = (var + (mean - mean_all) ** 2) * ctx.factor
dist.all_reduce(var_all, dist.ReduceOp.SUM)
mean = mean_all
var = var_all
# Update running stats
running_mean.mul_((1 - ctx.momentum)).add_(ctx.momentum * mean)
count = batch_size.item() * x.view(x.shape[0], x.shape[1], -1).shape[-1]
running_var.mul_((1 - ctx.momentum)).add_(ctx.momentum * var * (float(count) / (count - 1)))
# Mark in-place modified tensors
ctx.mark_dirty(x, running_mean, running_var)
else:
mean, var = running_mean.contiguous(), running_var.contiguous()
ctx.mark_dirty(x)
# BN forward + activation
_backend.forward(x, mean, var, weight, bias, ctx.affine, ctx.eps)
_act_forward(ctx, x)
# Output
ctx.var = var
ctx.save_for_backward(x, var, weight, bias)
ctx.mark_non_differentiable(running_mean, running_var)
return x, running_mean, running_var
@staticmethod
@once_differentiable
def backward(ctx, dz, _drunning_mean, _drunning_var):
z, var, weight, bias = ctx.saved_tensors
dz = dz.contiguous()
# Undo activation
_act_backward(ctx, z, dz)
if ctx.training:
edz, eydz = _backend.edz_eydz(z, dz, weight, bias, ctx.affine, ctx.eps)
edz_local = edz.clone()
eydz_local = eydz.clone()
if ctx.world_size > 1:
edz *= ctx.factor
dist.all_reduce(edz, dist.ReduceOp.SUM)
eydz *= ctx.factor
dist.all_reduce(eydz, dist.ReduceOp.SUM)
else:
edz_local = edz = dz.new_zeros(dz.size(1))
eydz_local = eydz = dz.new_zeros(dz.size(1))
dx = _backend.backward(z, dz, var, weight, bias, edz, eydz, ctx.affine, ctx.eps)
# dweight = eydz_local * weight.sign() if ctx.affine else None
dweight = eydz_local if ctx.affine else None
if dweight is not None:
dweight[weight < 0] *= -1
dbias = edz_local if ctx.affine else None
return dx, dweight, dbias, None, None, None, None, None, None, None
inplace_abn = InPlaceABN.apply
inplace_abn_sync = InPlaceABNSync.apply
__all__ = ["inplace_abn", "inplace_abn_sync", "ACT_RELU", "ACT_LEAKY_RELU", "ACT_ELU", "ACT_NONE"]
|