Spaces:
Sleeping
Sleeping
Ruining Li
commited on
Commit
•
2f72267
1
Parent(s):
3b04f0c
Initial commit.
Browse files- .gitignore +2 -0
- app.py +402 -0
- diffusion/__init__.py +46 -0
- diffusion/diffusion_utils.py +88 -0
- diffusion/gaussian_diffusion.py +957 -0
- diffusion/respace.py +129 -0
- diffusion/timestep_sampler.py +150 -0
- example_images/000.png +0 -0
- example_images/001.png +0 -0
- example_images/002.png +0 -0
- example_images/003.png +0 -0
- example_images/004.png +0 -0
- example_images/005.png +0 -0
- example_images/006.png +0 -0
- example_images/007.png +0 -0
- example_images/008.png +0 -0
- example_images/009.png +0 -0
- example_images/010.png +0 -0
- example_images/011.png +0 -0
- example_images/012.png +0 -0
- example_images/013.png +0 -0
- example_images/014.png +0 -0
- example_images/015.png +0 -0
- example_images/016.png +0 -0
- example_images/018.png +0 -0
- example_images/019.png +0 -0
- example_images/020.png +0 -0
- example_images/021.png +0 -0
- example_images/022.png +0 -0
- example_images/023.png +0 -0
- example_images/024.png +0 -0
- model.py +1992 -0
- requirements.txt +258 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
ckpts/
|
app.py
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import os
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import random
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
from diffusers.models import AutoencoderKL
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
from segment_anything import build_sam, SamPredictor
|
11 |
+
from tqdm import tqdm
|
12 |
+
from transformers import CLIPModel, AutoProcessor, CLIPVisionModel
|
13 |
+
import torch
|
14 |
+
from torchvision import transforms
|
15 |
+
|
16 |
+
from diffusion import create_diffusion
|
17 |
+
from model import UNet2DDragConditionModel
|
18 |
+
|
19 |
+
|
20 |
+
TITLE = '''DragAPart: Learning a Part-Level Motion Prior for Articulated Objects'''
|
21 |
+
DESCRIPTION = """
|
22 |
+
<div>
|
23 |
+
Try <a href='https://arxiv.org/abs/24xx.xxxxx'><b>DragAPart</b></a> yourself to manipulate your favorite articulated objects in 2 seconds!
|
24 |
+
</div>
|
25 |
+
"""
|
26 |
+
INSTRUCTION = '''
|
27 |
+
2 steps to get started:
|
28 |
+
- Upload an image of an articulated object.
|
29 |
+
- Add one or more drags on the object to specify the part-level interactions.
|
30 |
+
|
31 |
+
How to add drags:
|
32 |
+
- To add a drag, first click on the starting point of the drag, then click on the ending point of the drag, on the Input Image (leftmost).
|
33 |
+
- You can add up to 10 drags, but we suggest one drag per part.
|
34 |
+
- After every click, the drags will be visualized on the Image with Drags (second from left).
|
35 |
+
- If the last drag is not completed (you specified the starting point but not the ending point), it will simply be ignored.
|
36 |
+
- Have fun dragging!
|
37 |
+
|
38 |
+
Then, you will be prompted to verify the object segmentation. Once you confirm that the segmentation is decent, the output image will be generated in seconds!
|
39 |
+
'''
|
40 |
+
PREPROCESS_INSTRUCTION = '''
|
41 |
+
Segmentation is needed if it is not already provided through an alpha channel in the input image.
|
42 |
+
You don't need to tick this box if you have chosen one of the example images.
|
43 |
+
If you have uploaded one of your own images, it is very likely that you will need to tick this box.
|
44 |
+
You should verify that the preprocessed image is object-centric (i.e., clearly contains a single object) and has white background.
|
45 |
+
'''
|
46 |
+
|
47 |
+
def center_and_square_image(pil_image_rgba, drags):
|
48 |
+
image = pil_image_rgba
|
49 |
+
alpha = np.array(image)[:, :, 3] # Extract the alpha channel
|
50 |
+
|
51 |
+
cy, cx = np.round(np.mean(np.nonzero(alpha), axis=1)).astype(int)
|
52 |
+
side_length = max(image.width, image.height)
|
53 |
+
padded_image = ImageOps.expand(
|
54 |
+
image,
|
55 |
+
(side_length // 2, side_length // 2, side_length // 2, side_length // 2),
|
56 |
+
fill=(255, 255, 255, 255)
|
57 |
+
)
|
58 |
+
left, top = cx, cy
|
59 |
+
new_drags = []
|
60 |
+
for d in drags:
|
61 |
+
x, y = d
|
62 |
+
new_x, new_y = (x + side_length // 2 - cx) / side_length, (y + side_length // 2 - cy) / side_length
|
63 |
+
new_drags.append((new_x, new_y))
|
64 |
+
|
65 |
+
# Crop or pad the image as needed to make it centered around (cx, cy)
|
66 |
+
image = padded_image.crop((left, top, left + side_length, top + side_length))
|
67 |
+
# Resize the image to 256x256
|
68 |
+
image = image.resize((256, 256), Image.Resampling.LANCZOS)
|
69 |
+
return image, new_drags
|
70 |
+
|
71 |
+
def sam_init():
|
72 |
+
sam_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "sam_vit_h_4b8939.pth")
|
73 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to("cuda"))
|
74 |
+
return predictor
|
75 |
+
|
76 |
+
def model_init():
|
77 |
+
model_checkpoint = os.path.join(os.path.dirname(__file__), "ckpts", "drag-a-part-final.pt")
|
78 |
+
model = UNet2DDragConditionModel.from_pretrained_sd(
|
79 |
+
os.path.join(os.path.dirname(__file__), "ckpts", "stable-diffusion-v1-5"),
|
80 |
+
unet_additional_kwargs=dict(
|
81 |
+
sample_size=32,
|
82 |
+
flow_original_res=False,
|
83 |
+
input_concat_dragging=False,
|
84 |
+
attn_concat_dragging=True,
|
85 |
+
use_drag_tokens=False,
|
86 |
+
single_drag_token=False,
|
87 |
+
one_sided_attn=True,
|
88 |
+
flow_in_old_version=False,
|
89 |
+
),
|
90 |
+
load=False,
|
91 |
+
)
|
92 |
+
model.load_state_dict(torch.load(model_checkpoint)["model"])
|
93 |
+
model = model.to("cuda")
|
94 |
+
return model
|
95 |
+
|
96 |
+
def sam_segment(predictor, input_image, drags, foreground_points=None):
|
97 |
+
image = np.asarray(input_image)
|
98 |
+
predictor.set_image(image)
|
99 |
+
|
100 |
+
with torch.no_grad():
|
101 |
+
masks_bbox, _, _ = predictor.predict(
|
102 |
+
point_coords=foreground_points if foreground_points is not None else None,
|
103 |
+
point_labels=np.ones(len(foreground_points)) if foreground_points is not None else None,
|
104 |
+
multimask_output=True
|
105 |
+
)
|
106 |
+
|
107 |
+
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
|
108 |
+
out_image[:, :, :3] = image
|
109 |
+
out_image[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255
|
110 |
+
torch.cuda.empty_cache()
|
111 |
+
out_image, new_drags = center_and_square_image(Image.fromarray(out_image, mode="RGBA"), drags)
|
112 |
+
|
113 |
+
return out_image, new_drags
|
114 |
+
|
115 |
+
def get_point(img, sel_pix, evt: gr.SelectData):
|
116 |
+
sel_pix.append(evt.index)
|
117 |
+
points = []
|
118 |
+
img = np.array(img)
|
119 |
+
height = img.shape[0]
|
120 |
+
arrow_width_large = 7 * height // 256
|
121 |
+
arrow_width_small = 3 * height // 256
|
122 |
+
circle_size = 5 * height // 256
|
123 |
+
|
124 |
+
with_alpha = img.shape[2] == 4
|
125 |
+
for idx, point in enumerate(sel_pix):
|
126 |
+
if idx % 2 == 1:
|
127 |
+
cv2.circle(img, tuple(point), circle_size, (0, 0, 255, 255) if with_alpha else (0, 0, 255), -1)
|
128 |
+
else:
|
129 |
+
cv2.circle(img, tuple(point), circle_size, (255, 0, 0, 255) if with_alpha else (255, 0, 0), -1)
|
130 |
+
points.append(tuple(point))
|
131 |
+
if len(points) == 2:
|
132 |
+
cv2.arrowedLine(img, points[0], points[1], (0, 0, 0, 255) if with_alpha else (0, 0, 0), arrow_width_large)
|
133 |
+
cv2.arrowedLine(img, points[0], points[1], (255, 255, 0, 255) if with_alpha else (0, 0, 0), arrow_width_small)
|
134 |
+
points = []
|
135 |
+
return img if isinstance(img, np.ndarray) else np.array(img)
|
136 |
+
|
137 |
+
def clear_drag():
|
138 |
+
return []
|
139 |
+
|
140 |
+
def preprocess_image(SAM_predictor, img, chk_group, drags):
|
141 |
+
if img is None:
|
142 |
+
gr.Warning("No image is specified. Please specify an image before preprocessing.")
|
143 |
+
return None, drags
|
144 |
+
|
145 |
+
if drags is None or len(drags) == 0:
|
146 |
+
foreground_points = None
|
147 |
+
else:
|
148 |
+
foreground_points = np.array([drags[i] for i in range(0, len(drags), 2)])
|
149 |
+
|
150 |
+
if len(drags) == 0:
|
151 |
+
gr.Warning("No drags are specified. We recommend first specifying the drags before preprocessing.")
|
152 |
+
|
153 |
+
new_drags = drags
|
154 |
+
if "Preprocess with Segmentation" in chk_group:
|
155 |
+
img_np = np.array(img)
|
156 |
+
rgb_img = img_np[..., :3]
|
157 |
+
img, new_drags = sam_segment(
|
158 |
+
SAM_predictor,
|
159 |
+
rgb_img,
|
160 |
+
drags,
|
161 |
+
foreground_points=foreground_points,
|
162 |
+
)
|
163 |
+
else:
|
164 |
+
new_drags = [(d[0] / img.width, d[1] / img.height) for d in drags]
|
165 |
+
|
166 |
+
img = np.array(img).astype(np.float32)
|
167 |
+
processed_img = img[..., :3] * img[..., 3:] / 255. + 255. * (1 - img[..., 3:] / 255.)
|
168 |
+
image_pil = Image.fromarray(processed_img.astype(np.uint8), mode="RGB")
|
169 |
+
processed_img = image_pil.resize((256, 256), Image.LANCZOS)
|
170 |
+
return processed_img, new_drags
|
171 |
+
|
172 |
+
def single_image_sample(
|
173 |
+
model,
|
174 |
+
diffusion,
|
175 |
+
x_cond,
|
176 |
+
x_cond_clip,
|
177 |
+
rel,
|
178 |
+
cfg_scale,
|
179 |
+
x_cond_extra,
|
180 |
+
drags,
|
181 |
+
hidden_cls,
|
182 |
+
num_steps=50,
|
183 |
+
):
|
184 |
+
z = torch.randn(2, 4, 32, 32).to("cuda")
|
185 |
+
|
186 |
+
# Prepare input for classifer-free guidance
|
187 |
+
rel = torch.cat([rel, rel], dim=0)
|
188 |
+
x_cond = torch.cat([x_cond, x_cond], dim=0)
|
189 |
+
x_cond_clip = torch.cat([x_cond_clip, x_cond_clip], dim=0)
|
190 |
+
x_cond_extra = torch.cat([x_cond_extra, x_cond_extra], dim=0)
|
191 |
+
drags = torch.cat([drags, drags], dim=0)
|
192 |
+
hidden_cls = torch.cat([hidden_cls, hidden_cls], dim=0)
|
193 |
+
|
194 |
+
model_kwargs = dict(
|
195 |
+
x_cond=x_cond,
|
196 |
+
x_cond_extra=x_cond_extra,
|
197 |
+
cfg_scale=cfg_scale,
|
198 |
+
hidden_cls=hidden_cls,
|
199 |
+
drags=drags,
|
200 |
+
)
|
201 |
+
|
202 |
+
# Denoising
|
203 |
+
step_delta = diffusion.num_timesteps // num_steps
|
204 |
+
for i in tqdm(range(num_steps)):
|
205 |
+
with torch.no_grad():
|
206 |
+
samples = diffusion.p_sample(
|
207 |
+
model.forward_with_cfg,
|
208 |
+
z,
|
209 |
+
torch.Tensor([diffusion.num_timesteps - 1 - step_delta * i]).long().to("cuda").repeat(z.shape[0]),
|
210 |
+
clip_denoised=False,
|
211 |
+
model_kwargs=model_kwargs,
|
212 |
+
)["pred_xstart"]
|
213 |
+
if i != num_steps - 1:
|
214 |
+
z = diffusion.q_sample(
|
215 |
+
samples,
|
216 |
+
torch.Tensor([diffusion.num_timesteps - 1 - step_delta * i]).long().to("cuda").repeat(z.shape[0])
|
217 |
+
)
|
218 |
+
|
219 |
+
samples, _ = samples.chunk(2, dim=0)
|
220 |
+
return samples
|
221 |
+
|
222 |
+
def generate_image(model, image_processor, vae, clip_model, clip_vit, diffusion, img_cond, seed, cfg_scale, drags_list):
|
223 |
+
if img_cond is None:
|
224 |
+
gr.Warning("Please preprocess the image first.")
|
225 |
+
return None
|
226 |
+
|
227 |
+
with torch.no_grad():
|
228 |
+
torch.manual_seed(seed)
|
229 |
+
np.random.seed(seed)
|
230 |
+
torch.cuda.manual_seed(seed)
|
231 |
+
torch.cuda.manual_seed_all(seed)
|
232 |
+
random.seed(seed)
|
233 |
+
|
234 |
+
pixels_cond = transforms.ToTensor()(img_cond.astype(np.float32) / 127.5 - 1).unsqueeze(0).to("cuda")
|
235 |
+
|
236 |
+
cond_pixel_preprocessed_for_clip = image_processor(
|
237 |
+
images=Image.fromarray(img_cond), return_tensors="pt"
|
238 |
+
).pixel_values.to("cuda")
|
239 |
+
with torch.no_grad():
|
240 |
+
x_cond = vae.encode(pixels_cond).latent_dist.sample().mul_(0.18215)
|
241 |
+
cond_clip_features = clip_model.get_image_features(cond_pixel_preprocessed_for_clip)
|
242 |
+
cls_embedding = torch.stack(
|
243 |
+
clip_vit(pixel_values=cond_pixel_preprocessed_for_clip, output_hidden_states=True).hidden_states,
|
244 |
+
dim=1
|
245 |
+
)[:, :, 0]
|
246 |
+
|
247 |
+
# dummies
|
248 |
+
rel = torch.zeros(1, 4).to("cuda")
|
249 |
+
x_cond_extra = torch.zeros(1, 3, 32, 32).to("cuda")
|
250 |
+
|
251 |
+
drags = torch.zeros(1, 10, 4).to("cuda")
|
252 |
+
for i in range(0, len(drags_list), 2):
|
253 |
+
if i + 1 == len(drags_list):
|
254 |
+
gr.Warning("The ending point of the last drag is not specified. The last drag is ignored.")
|
255 |
+
break
|
256 |
+
|
257 |
+
idx = i // 2
|
258 |
+
drags[0, idx, 0], drags[0, idx, 1], drags[0, idx, 2], drags[0, idx, 3] = \
|
259 |
+
drags_list[i][0], drags_list[i][1], drags_list[i + 1][0], drags_list[i + 1][1]
|
260 |
+
|
261 |
+
if idx == 9:
|
262 |
+
break
|
263 |
+
|
264 |
+
samples = single_image_sample(
|
265 |
+
model,
|
266 |
+
diffusion,
|
267 |
+
x_cond,
|
268 |
+
cond_clip_features,
|
269 |
+
rel,
|
270 |
+
cfg_scale,
|
271 |
+
x_cond_extra,
|
272 |
+
drags,
|
273 |
+
cls_embedding,
|
274 |
+
num_steps=50,
|
275 |
+
)
|
276 |
+
|
277 |
+
with torch.no_grad():
|
278 |
+
images = vae.decode(samples / 0.18215).sample
|
279 |
+
images = ((images + 1)[0].permute(1, 2, 0) * 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
280 |
+
return images
|
281 |
+
|
282 |
+
|
283 |
+
sam_predictor = sam_init()
|
284 |
+
model = model_init()
|
285 |
+
|
286 |
+
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-ema").to('cuda')
|
287 |
+
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to('cuda')
|
288 |
+
clip_vit = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14").to('cuda')
|
289 |
+
image_processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
290 |
+
diffusion = create_diffusion(
|
291 |
+
timestep_respacing="",
|
292 |
+
learn_sigma=False,
|
293 |
+
)
|
294 |
+
|
295 |
+
with gr.Blocks(title=TITLE) as demo:
|
296 |
+
gr.Markdown("# " + DESCRIPTION)
|
297 |
+
|
298 |
+
with gr.Row():
|
299 |
+
gr.Markdown(INSTRUCTION)
|
300 |
+
|
301 |
+
drags = gr.State(value=[])
|
302 |
+
|
303 |
+
with gr.Row(variant="panel"):
|
304 |
+
with gr.Column(scale=1):
|
305 |
+
input_image = gr.Image(
|
306 |
+
interactive=True,
|
307 |
+
type='pil',
|
308 |
+
image_mode="RGBA",
|
309 |
+
width=256,
|
310 |
+
show_label=True,
|
311 |
+
label="Input Image",
|
312 |
+
)
|
313 |
+
|
314 |
+
example_folder = os.path.join(os.path.dirname(__file__), "./example_images")
|
315 |
+
example_fns = [os.path.join(example_folder, example) for example in sorted(os.listdir(example_folder))]
|
316 |
+
gr.Examples(
|
317 |
+
examples=example_fns,
|
318 |
+
inputs=[input_image],
|
319 |
+
cache_examples=False,
|
320 |
+
label='Feel free to use one of our provided examples!',
|
321 |
+
examples_per_page=30
|
322 |
+
)
|
323 |
+
|
324 |
+
input_image.change(
|
325 |
+
fn=clear_drag,
|
326 |
+
outputs=[drags],
|
327 |
+
)
|
328 |
+
|
329 |
+
with gr.Column(scale=1):
|
330 |
+
drag_image = gr.Image(
|
331 |
+
type="numpy",
|
332 |
+
label="Image with Drags",
|
333 |
+
interactive=False,
|
334 |
+
width=256,
|
335 |
+
image_mode="RGB",
|
336 |
+
)
|
337 |
+
|
338 |
+
input_image.select(
|
339 |
+
fn=get_point,
|
340 |
+
inputs=[input_image, drags],
|
341 |
+
outputs=[drag_image],
|
342 |
+
)
|
343 |
+
|
344 |
+
with gr.Column(scale=1):
|
345 |
+
processed_image = gr.Image(
|
346 |
+
type='numpy',
|
347 |
+
label="Processed Image",
|
348 |
+
interactive=False,
|
349 |
+
width=256,
|
350 |
+
height=256,
|
351 |
+
image_mode='RGB',
|
352 |
+
)
|
353 |
+
processed_image_highres = gr.Image(type='pil', image_mode='RGB', visible=False)
|
354 |
+
|
355 |
+
with gr.Accordion('Advanced preprocessing options', open=True):
|
356 |
+
with gr.Row():
|
357 |
+
with gr.Column():
|
358 |
+
preprocess_chk_group = gr.CheckboxGroup(
|
359 |
+
['Preprocess with Segmentation'],
|
360 |
+
label='Segment',
|
361 |
+
info=PREPROCESS_INSTRUCTION
|
362 |
+
)
|
363 |
+
|
364 |
+
preprocess_button = gr.Button(
|
365 |
+
value="Preprocess Input Image",
|
366 |
+
)
|
367 |
+
preprocess_button.click(
|
368 |
+
fn=partial(preprocess_image, sam_predictor),
|
369 |
+
inputs=[input_image, preprocess_chk_group, drags],
|
370 |
+
outputs=[processed_image, drags],
|
371 |
+
queue=True,
|
372 |
+
)
|
373 |
+
|
374 |
+
with gr.Column(scale=1):
|
375 |
+
generated_image = gr.Image(
|
376 |
+
type="numpy",
|
377 |
+
label="Generated Image",
|
378 |
+
interactive=False,
|
379 |
+
height=256,
|
380 |
+
width=256,
|
381 |
+
image_mode="RGB",
|
382 |
+
)
|
383 |
+
|
384 |
+
with gr.Accordion('Advanced generation options', open=True):
|
385 |
+
with gr.Row():
|
386 |
+
with gr.Column():
|
387 |
+
seed = gr.Slider(label="seed", value=0, minimum=0, maximum=10000, step=1, randomize=False)
|
388 |
+
cfg_scale = gr.Slider(
|
389 |
+
label="classifier-free guidance weight",
|
390 |
+
value=5, minimum=1, maximum=10, step=0.1
|
391 |
+
)
|
392 |
+
|
393 |
+
generate_button = gr.Button(
|
394 |
+
value="Generate Image",
|
395 |
+
)
|
396 |
+
generate_button.click(
|
397 |
+
fn=partial(generate_image, model, image_processor, vae, clip_model, clip_vit, diffusion),
|
398 |
+
inputs=[processed_image, seed, cfg_scale, drags],
|
399 |
+
outputs=[generated_image],
|
400 |
+
)
|
401 |
+
|
402 |
+
demo.launch(share=True)
|
diffusion/__init__.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
from . import gaussian_diffusion as gd
|
7 |
+
from .respace import SpacedDiffusion, space_timesteps
|
8 |
+
|
9 |
+
|
10 |
+
def create_diffusion(
|
11 |
+
timestep_respacing,
|
12 |
+
noise_schedule="linear",
|
13 |
+
use_kl=False,
|
14 |
+
sigma_small=False,
|
15 |
+
predict_xstart=False,
|
16 |
+
learn_sigma=True,
|
17 |
+
rescale_learned_sigmas=False,
|
18 |
+
diffusion_steps=1000
|
19 |
+
):
|
20 |
+
betas = gd.get_named_beta_schedule(noise_schedule, diffusion_steps)
|
21 |
+
if use_kl:
|
22 |
+
loss_type = gd.LossType.RESCALED_KL
|
23 |
+
elif rescale_learned_sigmas:
|
24 |
+
loss_type = gd.LossType.RESCALED_MSE
|
25 |
+
else:
|
26 |
+
loss_type = gd.LossType.MSE
|
27 |
+
if timestep_respacing is None or timestep_respacing == "":
|
28 |
+
timestep_respacing = [diffusion_steps]
|
29 |
+
return SpacedDiffusion(
|
30 |
+
use_timesteps=space_timesteps(diffusion_steps, timestep_respacing),
|
31 |
+
betas=betas,
|
32 |
+
model_mean_type=(
|
33 |
+
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
|
34 |
+
),
|
35 |
+
model_var_type=(
|
36 |
+
(
|
37 |
+
gd.ModelVarType.FIXED_LARGE
|
38 |
+
if not sigma_small
|
39 |
+
else gd.ModelVarType.FIXED_SMALL
|
40 |
+
)
|
41 |
+
if not learn_sigma
|
42 |
+
else gd.ModelVarType.LEARNED_RANGE
|
43 |
+
),
|
44 |
+
loss_type=loss_type
|
45 |
+
# rescale_timesteps=rescale_timesteps,
|
46 |
+
)
|
diffusion/diffusion_utils.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import torch as th
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
11 |
+
"""
|
12 |
+
Compute the KL divergence between two gaussians.
|
13 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
14 |
+
scalars, among other use cases.
|
15 |
+
"""
|
16 |
+
tensor = None
|
17 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
18 |
+
if isinstance(obj, th.Tensor):
|
19 |
+
tensor = obj
|
20 |
+
break
|
21 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
22 |
+
|
23 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
24 |
+
# Tensors, but it does not work for th.exp().
|
25 |
+
logvar1, logvar2 = [
|
26 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
27 |
+
for x in (logvar1, logvar2)
|
28 |
+
]
|
29 |
+
|
30 |
+
return 0.5 * (
|
31 |
+
-1.0
|
32 |
+
+ logvar2
|
33 |
+
- logvar1
|
34 |
+
+ th.exp(logvar1 - logvar2)
|
35 |
+
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
def approx_standard_normal_cdf(x):
|
40 |
+
"""
|
41 |
+
A fast approximation of the cumulative distribution function of the
|
42 |
+
standard normal.
|
43 |
+
"""
|
44 |
+
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
45 |
+
|
46 |
+
|
47 |
+
def continuous_gaussian_log_likelihood(x, *, means, log_scales):
|
48 |
+
"""
|
49 |
+
Compute the log-likelihood of a continuous Gaussian distribution.
|
50 |
+
:param x: the targets
|
51 |
+
:param means: the Gaussian mean Tensor.
|
52 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
53 |
+
:return: a tensor like x of log probabilities (in nats).
|
54 |
+
"""
|
55 |
+
centered_x = x - means
|
56 |
+
inv_stdv = th.exp(-log_scales)
|
57 |
+
normalized_x = centered_x * inv_stdv
|
58 |
+
log_probs = th.distributions.Normal(th.zeros_like(x), th.ones_like(x)).log_prob(normalized_x)
|
59 |
+
return log_probs
|
60 |
+
|
61 |
+
|
62 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
63 |
+
"""
|
64 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
65 |
+
given image.
|
66 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
67 |
+
rescaled to the range [-1, 1].
|
68 |
+
:param means: the Gaussian mean Tensor.
|
69 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
70 |
+
:return: a tensor like x of log probabilities (in nats).
|
71 |
+
"""
|
72 |
+
assert x.shape == means.shape == log_scales.shape
|
73 |
+
centered_x = x - means
|
74 |
+
inv_stdv = th.exp(-log_scales)
|
75 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
76 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
77 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
78 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
79 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
80 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
81 |
+
cdf_delta = cdf_plus - cdf_min
|
82 |
+
log_probs = th.where(
|
83 |
+
x < -0.999,
|
84 |
+
log_cdf_plus,
|
85 |
+
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
86 |
+
)
|
87 |
+
assert log_probs.shape == x.shape
|
88 |
+
return log_probs
|
diffusion/gaussian_diffusion.py
ADDED
@@ -0,0 +1,957 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import torch as th
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import enum
|
13 |
+
|
14 |
+
from .diffusion_utils import discretized_gaussian_log_likelihood, normal_kl
|
15 |
+
|
16 |
+
|
17 |
+
def mean_flat(tensor):
|
18 |
+
"""
|
19 |
+
Take the mean over all non-batch dimensions.
|
20 |
+
"""
|
21 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
22 |
+
|
23 |
+
|
24 |
+
class ModelMeanType(enum.Enum):
|
25 |
+
"""
|
26 |
+
Which type of output the model predicts.
|
27 |
+
"""
|
28 |
+
|
29 |
+
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
|
30 |
+
START_X = enum.auto() # the model predicts x_0
|
31 |
+
EPSILON = enum.auto() # the model predicts epsilon
|
32 |
+
|
33 |
+
|
34 |
+
class ModelVarType(enum.Enum):
|
35 |
+
"""
|
36 |
+
What is used as the model's output variance.
|
37 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
38 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
39 |
+
"""
|
40 |
+
|
41 |
+
LEARNED = enum.auto()
|
42 |
+
FIXED_SMALL = enum.auto()
|
43 |
+
FIXED_LARGE = enum.auto()
|
44 |
+
LEARNED_RANGE = enum.auto()
|
45 |
+
|
46 |
+
|
47 |
+
class LossType(enum.Enum):
|
48 |
+
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
|
49 |
+
RESCALED_MSE = (
|
50 |
+
enum.auto()
|
51 |
+
) # use raw MSE loss (with RESCALED_KL when learning variances)
|
52 |
+
KL = enum.auto() # use the variational lower-bound
|
53 |
+
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
|
54 |
+
|
55 |
+
def is_vb(self):
|
56 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
57 |
+
|
58 |
+
|
59 |
+
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
|
60 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
61 |
+
warmup_time = int(num_diffusion_timesteps * warmup_frac)
|
62 |
+
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
|
63 |
+
return betas
|
64 |
+
|
65 |
+
|
66 |
+
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
|
67 |
+
"""
|
68 |
+
This is the deprecated API for creating beta schedules.
|
69 |
+
See get_named_beta_schedule() for the new library of schedules.
|
70 |
+
"""
|
71 |
+
if beta_schedule == "quad":
|
72 |
+
betas = (
|
73 |
+
np.linspace(
|
74 |
+
beta_start ** 0.5,
|
75 |
+
beta_end ** 0.5,
|
76 |
+
num_diffusion_timesteps,
|
77 |
+
dtype=np.float64,
|
78 |
+
)
|
79 |
+
** 2
|
80 |
+
)
|
81 |
+
elif beta_schedule == "linear":
|
82 |
+
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64)
|
83 |
+
elif beta_schedule == "warmup10":
|
84 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
|
85 |
+
elif beta_schedule == "warmup50":
|
86 |
+
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
|
87 |
+
elif beta_schedule == "const":
|
88 |
+
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
|
89 |
+
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
|
90 |
+
betas = 1.0 / np.linspace(
|
91 |
+
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64
|
92 |
+
)
|
93 |
+
else:
|
94 |
+
raise NotImplementedError(beta_schedule)
|
95 |
+
assert betas.shape == (num_diffusion_timesteps,)
|
96 |
+
return betas
|
97 |
+
|
98 |
+
|
99 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
100 |
+
"""
|
101 |
+
Get a pre-defined beta schedule for the given name.
|
102 |
+
The beta schedule library consists of beta schedules which remain similar
|
103 |
+
in the limit of num_diffusion_timesteps.
|
104 |
+
Beta schedules may be added, but should not be removed or changed once
|
105 |
+
they are committed to maintain backwards compatibility.
|
106 |
+
"""
|
107 |
+
if schedule_name == "linear":
|
108 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
109 |
+
# diffusion steps.
|
110 |
+
scale = 1000 / num_diffusion_timesteps
|
111 |
+
return get_beta_schedule(
|
112 |
+
"linear",
|
113 |
+
beta_start=scale * 0.0001,
|
114 |
+
beta_end=scale * 0.02,
|
115 |
+
num_diffusion_timesteps=num_diffusion_timesteps,
|
116 |
+
)
|
117 |
+
elif schedule_name == "squaredcos_cap_v2":
|
118 |
+
return betas_for_alpha_bar(
|
119 |
+
num_diffusion_timesteps,
|
120 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
121 |
+
)
|
122 |
+
else:
|
123 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
124 |
+
|
125 |
+
|
126 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
127 |
+
"""
|
128 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
129 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
130 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
131 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
132 |
+
produces the cumulative product of (1-beta) up to that
|
133 |
+
part of the diffusion process.
|
134 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
135 |
+
prevent singularities.
|
136 |
+
"""
|
137 |
+
betas = []
|
138 |
+
for i in range(num_diffusion_timesteps):
|
139 |
+
t1 = i / num_diffusion_timesteps
|
140 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
141 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
142 |
+
return np.array(betas)
|
143 |
+
|
144 |
+
|
145 |
+
class GaussianDiffusion:
|
146 |
+
"""
|
147 |
+
Utilities for training and sampling diffusion models.
|
148 |
+
Original ported from this codebase:
|
149 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
150 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
151 |
+
starting at T and going to 1.
|
152 |
+
"""
|
153 |
+
|
154 |
+
def __init__(
|
155 |
+
self,
|
156 |
+
*,
|
157 |
+
betas,
|
158 |
+
model_mean_type,
|
159 |
+
model_var_type,
|
160 |
+
loss_type
|
161 |
+
):
|
162 |
+
|
163 |
+
self.model_mean_type = model_mean_type
|
164 |
+
self.model_var_type = model_var_type
|
165 |
+
self.loss_type = loss_type
|
166 |
+
|
167 |
+
# Use float64 for accuracy.
|
168 |
+
betas = np.array(betas, dtype=np.float64)
|
169 |
+
self.betas = betas
|
170 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
171 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
172 |
+
|
173 |
+
self.num_timesteps = int(betas.shape[0])
|
174 |
+
|
175 |
+
alphas = 1.0 - betas
|
176 |
+
self.alphas = alphas
|
177 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
178 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
179 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
180 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
181 |
+
|
182 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
183 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
184 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
185 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
186 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
187 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
188 |
+
|
189 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
190 |
+
self.posterior_variance = (
|
191 |
+
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
192 |
+
)
|
193 |
+
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
|
194 |
+
self.posterior_log_variance_clipped = np.log(
|
195 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
196 |
+
) if len(self.posterior_variance) > 1 else np.array([])
|
197 |
+
|
198 |
+
self.posterior_mean_coef1 = (
|
199 |
+
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
200 |
+
)
|
201 |
+
self.posterior_mean_coef2 = (
|
202 |
+
(1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod)
|
203 |
+
)
|
204 |
+
|
205 |
+
def q_mean_variance(self, x_start, t):
|
206 |
+
"""
|
207 |
+
Get the distribution q(x_t | x_0).
|
208 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
209 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
210 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
211 |
+
"""
|
212 |
+
mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
213 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
214 |
+
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
|
215 |
+
return mean, variance, log_variance
|
216 |
+
|
217 |
+
def q_sample(self, x_start, t, noise=None):
|
218 |
+
"""
|
219 |
+
Diffuse the data for a given number of diffusion steps.
|
220 |
+
In other words, sample from q(x_t | x_0).
|
221 |
+
:param x_start: the initial data batch.
|
222 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
223 |
+
:param noise: if specified, the split-out normal noise.
|
224 |
+
:return: A noisy version of x_start.
|
225 |
+
"""
|
226 |
+
if noise is None:
|
227 |
+
noise = th.randn_like(x_start)
|
228 |
+
assert noise.shape == x_start.shape
|
229 |
+
return (
|
230 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
231 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
|
232 |
+
)
|
233 |
+
|
234 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
235 |
+
"""
|
236 |
+
Compute the mean and variance of the diffusion posterior:
|
237 |
+
q(x_{t-1} | x_t, x_0)
|
238 |
+
"""
|
239 |
+
assert x_start.shape == x_t.shape
|
240 |
+
posterior_mean = (
|
241 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
242 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
243 |
+
)
|
244 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
245 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
246 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
247 |
+
)
|
248 |
+
assert (
|
249 |
+
posterior_mean.shape[0]
|
250 |
+
== posterior_variance.shape[0]
|
251 |
+
== posterior_log_variance_clipped.shape[0]
|
252 |
+
== x_start.shape[0]
|
253 |
+
)
|
254 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
255 |
+
|
256 |
+
def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None):
|
257 |
+
"""
|
258 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
259 |
+
the initial x, x_0.
|
260 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
261 |
+
as input.
|
262 |
+
:param x: the [N x C x ...] tensor at time t.
|
263 |
+
:param t: a 1-D Tensor of timesteps.
|
264 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
265 |
+
:param denoised_fn: if not None, a function which applies to the
|
266 |
+
x_start prediction before it is used to sample. Applies before
|
267 |
+
clip_denoised.
|
268 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
269 |
+
pass to the model. This can be used for conditioning.
|
270 |
+
:return: a dict with the following keys:
|
271 |
+
- 'mean': the model mean output.
|
272 |
+
- 'variance': the model variance output.
|
273 |
+
- 'log_variance': the log of 'variance'.
|
274 |
+
- 'pred_xstart': the prediction for x_0.
|
275 |
+
"""
|
276 |
+
if model_kwargs is None:
|
277 |
+
model_kwargs = {}
|
278 |
+
elif callable(model_kwargs):
|
279 |
+
model_kwargs = model_kwargs()
|
280 |
+
|
281 |
+
B, C = x.shape[:2]
|
282 |
+
assert t.shape == (B,)
|
283 |
+
model_output = model(x, t, **model_kwargs)
|
284 |
+
if isinstance(model_output, tuple):
|
285 |
+
model_output, extra = model_output
|
286 |
+
else:
|
287 |
+
extra = None
|
288 |
+
|
289 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
290 |
+
assert model_output.shape == (B, C * 2, *x.shape[2:])
|
291 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
292 |
+
min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape)
|
293 |
+
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
|
294 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
295 |
+
frac = (model_var_values + 1) / 2
|
296 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
297 |
+
model_variance = th.exp(model_log_variance)
|
298 |
+
else:
|
299 |
+
model_variance, model_log_variance = {
|
300 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
301 |
+
# to get a better decoder log likelihood.
|
302 |
+
ModelVarType.FIXED_LARGE: (
|
303 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
304 |
+
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
305 |
+
),
|
306 |
+
ModelVarType.FIXED_SMALL: (
|
307 |
+
self.posterior_variance,
|
308 |
+
self.posterior_log_variance_clipped,
|
309 |
+
),
|
310 |
+
}[self.model_var_type]
|
311 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
312 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
313 |
+
|
314 |
+
def process_xstart(x):
|
315 |
+
if denoised_fn is not None:
|
316 |
+
x = denoised_fn(x)
|
317 |
+
if clip_denoised:
|
318 |
+
return x.clamp(-1, 1)
|
319 |
+
return x
|
320 |
+
|
321 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
322 |
+
pred_xstart = process_xstart(model_output)
|
323 |
+
else:
|
324 |
+
pred_xstart = process_xstart(
|
325 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
326 |
+
)
|
327 |
+
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t)
|
328 |
+
|
329 |
+
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
330 |
+
return {
|
331 |
+
"mean": model_mean,
|
332 |
+
"variance": model_variance,
|
333 |
+
"log_variance": model_log_variance,
|
334 |
+
"pred_xstart": pred_xstart,
|
335 |
+
"extra": extra,
|
336 |
+
}
|
337 |
+
|
338 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
339 |
+
assert x_t.shape == eps.shape
|
340 |
+
return (
|
341 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
342 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
343 |
+
)
|
344 |
+
|
345 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
346 |
+
return (
|
347 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart
|
348 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
349 |
+
|
350 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
351 |
+
"""
|
352 |
+
Compute the mean for the previous step, given a function cond_fn that
|
353 |
+
computes the gradient of a conditional log probability with respect to
|
354 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
355 |
+
condition on y.
|
356 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
357 |
+
"""
|
358 |
+
gradient = cond_fn(x, t, **model_kwargs)
|
359 |
+
new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
360 |
+
return new_mean
|
361 |
+
|
362 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
363 |
+
"""
|
364 |
+
Compute what the p_mean_variance output would have been, should the
|
365 |
+
model's score function be conditioned by cond_fn.
|
366 |
+
See condition_mean() for details on cond_fn.
|
367 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
368 |
+
from Song et al (2020).
|
369 |
+
"""
|
370 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
371 |
+
|
372 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
373 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs)
|
374 |
+
|
375 |
+
out = p_mean_var.copy()
|
376 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
377 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t)
|
378 |
+
return out
|
379 |
+
|
380 |
+
def p_sample(
|
381 |
+
self,
|
382 |
+
model,
|
383 |
+
x,
|
384 |
+
t,
|
385 |
+
clip_denoised=True,
|
386 |
+
denoised_fn=None,
|
387 |
+
cond_fn=None,
|
388 |
+
model_kwargs=None,
|
389 |
+
keep_mask_region=None,
|
390 |
+
original_x=None,
|
391 |
+
resampling_steps: int = 20,
|
392 |
+
):
|
393 |
+
"""
|
394 |
+
Sample x_{t-1} from the model at the given timestep.
|
395 |
+
:param model: the model to sample from.
|
396 |
+
:param x: the current tensor at x_{t-1}.
|
397 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
398 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
399 |
+
:param denoised_fn: if not None, a function which applies to the
|
400 |
+
x_start prediction before it is used to sample.
|
401 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
402 |
+
similarly to the model.
|
403 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
404 |
+
pass to the model. This can be used for conditioning.
|
405 |
+
:return: a dict containing the following keys:
|
406 |
+
- 'sample': a random sample from the model.
|
407 |
+
- 'pred_xstart': a prediction of x_0.
|
408 |
+
"""
|
409 |
+
if keep_mask_region is None:
|
410 |
+
out = self.p_mean_variance(
|
411 |
+
model,
|
412 |
+
x,
|
413 |
+
t,
|
414 |
+
clip_denoised=clip_denoised,
|
415 |
+
denoised_fn=denoised_fn,
|
416 |
+
model_kwargs=model_kwargs,
|
417 |
+
)
|
418 |
+
noise = th.randn_like(x)
|
419 |
+
nonzero_mask = (
|
420 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
421 |
+
) # no noise when t == 0
|
422 |
+
if cond_fn is not None:
|
423 |
+
out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
424 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
425 |
+
else:
|
426 |
+
assert original_x is not None
|
427 |
+
for _ in range(resampling_steps):
|
428 |
+
out = self.p_mean_variance(
|
429 |
+
model,
|
430 |
+
x,
|
431 |
+
t,
|
432 |
+
clip_denoised=clip_denoised,
|
433 |
+
denoised_fn=denoised_fn,
|
434 |
+
model_kwargs=model_kwargs,
|
435 |
+
)
|
436 |
+
noise = th.randn_like(x)
|
437 |
+
nonzero_mask = (
|
438 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
439 |
+
) # no noise when t == 0
|
440 |
+
if cond_fn is not None:
|
441 |
+
out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
442 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
443 |
+
t_neq_0 = t.clone()
|
444 |
+
t_neq_0[t_neq_0 == 0] = 1
|
445 |
+
x_known_sample = (1 - nonzero_mask) * original_x + nonzero_mask * self.q_sample(original_x, t_neq_0)
|
446 |
+
sample = keep_mask_region * x_known_sample + (1 - keep_mask_region) * sample
|
447 |
+
|
448 |
+
n = th.randn_like(x)
|
449 |
+
x = th.sqrt(_extract_into_tensor(self.alphas, t, x.shape)) * sample + \
|
450 |
+
_extract_into_tensor(self.betas, t, x.shape) * n
|
451 |
+
|
452 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
453 |
+
|
454 |
+
def p_sample_loop(
|
455 |
+
self,
|
456 |
+
model,
|
457 |
+
shape,
|
458 |
+
noise=None,
|
459 |
+
clip_denoised=True,
|
460 |
+
denoised_fn=None,
|
461 |
+
cond_fn=None,
|
462 |
+
model_kwargs=None,
|
463 |
+
device=None,
|
464 |
+
progress=False,
|
465 |
+
keep_mask_region=None,
|
466 |
+
original_x=None,
|
467 |
+
resampling_steps: int = 20,
|
468 |
+
):
|
469 |
+
"""
|
470 |
+
Generate samples from the model.
|
471 |
+
:param model: the model module.
|
472 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
473 |
+
:param noise: if specified, the noise from the encoder to sample.
|
474 |
+
Should be of the same shape as `shape`.
|
475 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
476 |
+
:param denoised_fn: if not None, a function which applies to the
|
477 |
+
x_start prediction before it is used to sample.
|
478 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
479 |
+
similarly to the model.
|
480 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
481 |
+
pass to the model. This can be used for conditioning.
|
482 |
+
:param device: if specified, the device to create the samples on.
|
483 |
+
If not specified, use a model parameter's device.
|
484 |
+
:param progress: if True, show a tqdm progress bar.
|
485 |
+
:return: a non-differentiable batch of samples.
|
486 |
+
"""
|
487 |
+
final = None
|
488 |
+
for sample in self.p_sample_loop_progressive(
|
489 |
+
model,
|
490 |
+
shape,
|
491 |
+
noise=noise,
|
492 |
+
clip_denoised=clip_denoised,
|
493 |
+
denoised_fn=denoised_fn,
|
494 |
+
cond_fn=cond_fn,
|
495 |
+
model_kwargs=model_kwargs,
|
496 |
+
device=device,
|
497 |
+
progress=progress,
|
498 |
+
keep_mask_region=keep_mask_region,
|
499 |
+
original_x=original_x,
|
500 |
+
resampling_steps=resampling_steps,
|
501 |
+
):
|
502 |
+
final = sample
|
503 |
+
return final["sample"]
|
504 |
+
|
505 |
+
def p_sample_loop_progressive(
|
506 |
+
self,
|
507 |
+
model,
|
508 |
+
shape,
|
509 |
+
noise=None,
|
510 |
+
clip_denoised=True,
|
511 |
+
denoised_fn=None,
|
512 |
+
cond_fn=None,
|
513 |
+
model_kwargs=None,
|
514 |
+
device=None,
|
515 |
+
progress=False,
|
516 |
+
keep_mask_region=None,
|
517 |
+
original_x=None,
|
518 |
+
resampling_steps: int = 20,
|
519 |
+
):
|
520 |
+
"""
|
521 |
+
Generate samples from the model and yield intermediate samples from
|
522 |
+
each timestep of diffusion.
|
523 |
+
Arguments are the same as p_sample_loop().
|
524 |
+
Returns a generator over dicts, where each dict is the return value of
|
525 |
+
p_sample().
|
526 |
+
"""
|
527 |
+
if device is None:
|
528 |
+
device = next(model.parameters()).device
|
529 |
+
assert isinstance(shape, (tuple, list))
|
530 |
+
if noise is not None:
|
531 |
+
img = noise
|
532 |
+
else:
|
533 |
+
img = th.randn(*shape, device=device)
|
534 |
+
indices = list(range(self.num_timesteps))[::-1]
|
535 |
+
|
536 |
+
if progress:
|
537 |
+
# Lazy import so that we don't depend on tqdm.
|
538 |
+
from tqdm.auto import tqdm
|
539 |
+
|
540 |
+
indices = tqdm(indices)
|
541 |
+
|
542 |
+
for i in indices:
|
543 |
+
t = th.tensor([i] * shape[0], device=device)
|
544 |
+
with th.no_grad():
|
545 |
+
out = self.p_sample(
|
546 |
+
model,
|
547 |
+
img,
|
548 |
+
t,
|
549 |
+
clip_denoised=clip_denoised,
|
550 |
+
denoised_fn=denoised_fn,
|
551 |
+
cond_fn=cond_fn,
|
552 |
+
model_kwargs=model_kwargs,
|
553 |
+
keep_mask_region=keep_mask_region,
|
554 |
+
original_x=original_x,
|
555 |
+
resampling_steps=resampling_steps,
|
556 |
+
)
|
557 |
+
yield out
|
558 |
+
img = out["sample"]
|
559 |
+
|
560 |
+
def ddim_sample(
|
561 |
+
self,
|
562 |
+
model,
|
563 |
+
x,
|
564 |
+
t,
|
565 |
+
clip_denoised=True,
|
566 |
+
denoised_fn=None,
|
567 |
+
cond_fn=None,
|
568 |
+
model_kwargs=None,
|
569 |
+
eta=0.0,
|
570 |
+
):
|
571 |
+
"""
|
572 |
+
Sample x_{t-1} from the model using DDIM.
|
573 |
+
Same usage as p_sample().
|
574 |
+
"""
|
575 |
+
out = self.p_mean_variance(
|
576 |
+
model,
|
577 |
+
x,
|
578 |
+
t,
|
579 |
+
clip_denoised=clip_denoised,
|
580 |
+
denoised_fn=denoised_fn,
|
581 |
+
model_kwargs=model_kwargs,
|
582 |
+
)
|
583 |
+
if cond_fn is not None:
|
584 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
585 |
+
|
586 |
+
# Usually our model outputs epsilon, but we re-derive it
|
587 |
+
# in case we used x_start or x_prev prediction.
|
588 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
589 |
+
|
590 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
591 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
592 |
+
sigma = (
|
593 |
+
eta
|
594 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
595 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
596 |
+
)
|
597 |
+
# Equation 12.
|
598 |
+
noise = th.randn_like(x)
|
599 |
+
mean_pred = (
|
600 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
601 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
602 |
+
)
|
603 |
+
nonzero_mask = (
|
604 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
605 |
+
) # no noise when t == 0
|
606 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
607 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
608 |
+
|
609 |
+
def ddim_reverse_sample(
|
610 |
+
self,
|
611 |
+
model,
|
612 |
+
x,
|
613 |
+
t,
|
614 |
+
clip_denoised=True,
|
615 |
+
denoised_fn=None,
|
616 |
+
cond_fn=None,
|
617 |
+
model_kwargs=None,
|
618 |
+
eta=0.0,
|
619 |
+
):
|
620 |
+
"""
|
621 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
622 |
+
"""
|
623 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
624 |
+
out = self.p_mean_variance(
|
625 |
+
model,
|
626 |
+
x,
|
627 |
+
t,
|
628 |
+
clip_denoised=clip_denoised,
|
629 |
+
denoised_fn=denoised_fn,
|
630 |
+
model_kwargs=model_kwargs,
|
631 |
+
)
|
632 |
+
if cond_fn is not None:
|
633 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
634 |
+
# Usually our model outputs epsilon, but we re-derive it
|
635 |
+
# in case we used x_start or x_prev prediction.
|
636 |
+
eps = (
|
637 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
638 |
+
- out["pred_xstart"]
|
639 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
640 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
641 |
+
|
642 |
+
# Equation 12. reversed
|
643 |
+
mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps
|
644 |
+
|
645 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
646 |
+
|
647 |
+
def ddim_sample_loop(
|
648 |
+
self,
|
649 |
+
model,
|
650 |
+
shape,
|
651 |
+
noise=None,
|
652 |
+
clip_denoised=True,
|
653 |
+
denoised_fn=None,
|
654 |
+
cond_fn=None,
|
655 |
+
model_kwargs=None,
|
656 |
+
device=None,
|
657 |
+
progress=False,
|
658 |
+
eta=0.0,
|
659 |
+
):
|
660 |
+
"""
|
661 |
+
Generate samples from the model using DDIM.
|
662 |
+
Same usage as p_sample_loop().
|
663 |
+
"""
|
664 |
+
final = None
|
665 |
+
for sample in self.ddim_sample_loop_progressive(
|
666 |
+
model,
|
667 |
+
shape,
|
668 |
+
noise=noise,
|
669 |
+
clip_denoised=clip_denoised,
|
670 |
+
denoised_fn=denoised_fn,
|
671 |
+
cond_fn=cond_fn,
|
672 |
+
model_kwargs=model_kwargs,
|
673 |
+
device=device,
|
674 |
+
progress=progress,
|
675 |
+
eta=eta,
|
676 |
+
):
|
677 |
+
final = sample
|
678 |
+
return final["sample"]
|
679 |
+
|
680 |
+
def ddim_sample_loop_progressive(
|
681 |
+
self,
|
682 |
+
model,
|
683 |
+
shape,
|
684 |
+
noise=None,
|
685 |
+
clip_denoised=True,
|
686 |
+
denoised_fn=None,
|
687 |
+
cond_fn=None,
|
688 |
+
model_kwargs=None,
|
689 |
+
device=None,
|
690 |
+
progress=False,
|
691 |
+
eta=0.0,
|
692 |
+
):
|
693 |
+
"""
|
694 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
695 |
+
each timestep of DDIM.
|
696 |
+
Same usage as p_sample_loop_progressive().
|
697 |
+
"""
|
698 |
+
if device is None:
|
699 |
+
device = next(model.parameters()).device
|
700 |
+
assert isinstance(shape, (tuple, list))
|
701 |
+
if noise is not None:
|
702 |
+
img = noise
|
703 |
+
else:
|
704 |
+
img = th.randn(*shape, device=device)
|
705 |
+
indices = list(range(self.num_timesteps))[::-1]
|
706 |
+
|
707 |
+
if progress:
|
708 |
+
# Lazy import so that we don't depend on tqdm.
|
709 |
+
from tqdm.auto import tqdm
|
710 |
+
|
711 |
+
indices = tqdm(indices)
|
712 |
+
|
713 |
+
for i in indices:
|
714 |
+
t = th.tensor([i] * shape[0], device=device)
|
715 |
+
with th.no_grad():
|
716 |
+
out = self.ddim_sample(
|
717 |
+
model,
|
718 |
+
img,
|
719 |
+
t,
|
720 |
+
clip_denoised=clip_denoised,
|
721 |
+
denoised_fn=denoised_fn,
|
722 |
+
cond_fn=cond_fn,
|
723 |
+
model_kwargs=model_kwargs,
|
724 |
+
eta=eta,
|
725 |
+
)
|
726 |
+
yield out
|
727 |
+
img = out["sample"]
|
728 |
+
|
729 |
+
def _vb_terms_bpd(
|
730 |
+
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
|
731 |
+
):
|
732 |
+
"""
|
733 |
+
Get a term for the variational lower-bound.
|
734 |
+
The resulting units are bits (rather than nats, as one might expect).
|
735 |
+
This allows for comparison to other papers.
|
736 |
+
:return: a dict with the following keys:
|
737 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
738 |
+
- 'pred_xstart': the x_0 predictions.
|
739 |
+
"""
|
740 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
741 |
+
x_start=x_start, x_t=x_t, t=t
|
742 |
+
)
|
743 |
+
out = self.p_mean_variance(
|
744 |
+
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
745 |
+
)
|
746 |
+
kl = normal_kl(
|
747 |
+
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
748 |
+
)
|
749 |
+
kl = mean_flat(kl) / np.log(2.0)
|
750 |
+
|
751 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
752 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
753 |
+
)
|
754 |
+
assert decoder_nll.shape == x_start.shape
|
755 |
+
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
756 |
+
|
757 |
+
# At the first timestep return the decoder NLL,
|
758 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
759 |
+
output = th.where((t == 0), decoder_nll, kl)
|
760 |
+
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
761 |
+
|
762 |
+
def sds_losses(self, model, x_start, t, model_kwargs=None, noise=None):
|
763 |
+
if model_kwargs is None:
|
764 |
+
model_kwargs = {}
|
765 |
+
else:
|
766 |
+
model_kwargs = {
|
767 |
+
k: th.cat([v, v], dim=0) for k, v in model_kwargs.items()
|
768 |
+
}
|
769 |
+
|
770 |
+
if noise is None:
|
771 |
+
noise = th.randn_like(x_start)
|
772 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
773 |
+
x_t = th.cat([x_t, x_t], dim=0)
|
774 |
+
t = th.cat([t, t], dim=0)
|
775 |
+
model_output = model(x_t, t, **model_kwargs)
|
776 |
+
assert model_output.shape[0] % 2 == 0
|
777 |
+
|
778 |
+
B, C = x_t.shape[:2]
|
779 |
+
model_output = th.split(model_output, B // 2, dim=0)
|
780 |
+
|
781 |
+
target = {
|
782 |
+
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
783 |
+
x_start=x_start, x_t=x_t, t=t
|
784 |
+
)[0],
|
785 |
+
ModelMeanType.START_X: x_start,
|
786 |
+
ModelMeanType.EPSILON: noise,
|
787 |
+
}[self.model_mean_type]
|
788 |
+
|
789 |
+
assert self.model_mean_type == ModelMeanType.EPSILON
|
790 |
+
grad = (model_output - target)
|
791 |
+
t = (x_start - grad).detach()
|
792 |
+
|
793 |
+
return 0.5 * F.mse_loss(x_start, t, reduction="sum") / B * 2
|
794 |
+
|
795 |
+
|
796 |
+
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
|
797 |
+
"""
|
798 |
+
Compute training losses for a single timestep.
|
799 |
+
:param model: the model to evaluate loss on.
|
800 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
801 |
+
:param t: a batch of timestep indices.
|
802 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
803 |
+
pass to the model. This can be used for conditioning.
|
804 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
805 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
806 |
+
Some mean or variance settings may also have other keys.
|
807 |
+
"""
|
808 |
+
if model_kwargs is None:
|
809 |
+
model_kwargs = {}
|
810 |
+
if noise is None:
|
811 |
+
noise = th.randn_like(x_start)
|
812 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
813 |
+
|
814 |
+
terms = {}
|
815 |
+
|
816 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
817 |
+
terms["loss"] = self._vb_terms_bpd(
|
818 |
+
model=model,
|
819 |
+
x_start=x_start,
|
820 |
+
x_t=x_t,
|
821 |
+
t=t,
|
822 |
+
clip_denoised=False,
|
823 |
+
model_kwargs=model_kwargs,
|
824 |
+
)["output"]
|
825 |
+
if self.loss_type == LossType.RESCALED_KL:
|
826 |
+
terms["loss"] *= self.num_timesteps
|
827 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
828 |
+
model_output = model(x_t, t, **model_kwargs)
|
829 |
+
|
830 |
+
if self.model_var_type in [
|
831 |
+
ModelVarType.LEARNED,
|
832 |
+
ModelVarType.LEARNED_RANGE,
|
833 |
+
]:
|
834 |
+
B, C = x_t.shape[:2]
|
835 |
+
assert model_output.shape == (B, C * 2, *x_t.shape[2:]), (
|
836 |
+
model_output.shape,
|
837 |
+
(B, C * 2, *x_t.shape[2:]),
|
838 |
+
)
|
839 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
840 |
+
# Learn the variance using the variational bound, but don't let
|
841 |
+
# it affect our mean prediction.
|
842 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
843 |
+
terms["vb"] = self._vb_terms_bpd(
|
844 |
+
model=lambda *args, r=frozen_out: r,
|
845 |
+
x_start=x_start,
|
846 |
+
x_t=x_t,
|
847 |
+
t=t,
|
848 |
+
clip_denoised=False,
|
849 |
+
)["output"]
|
850 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
851 |
+
# Divide by 1000 for equivalence with initial implementation.
|
852 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
853 |
+
terms["vb"] *= self.num_timesteps / 1000.0
|
854 |
+
|
855 |
+
target = {
|
856 |
+
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
857 |
+
x_start=x_start, x_t=x_t, t=t
|
858 |
+
)[0],
|
859 |
+
ModelMeanType.START_X: x_start,
|
860 |
+
ModelMeanType.EPSILON: noise,
|
861 |
+
}[self.model_mean_type]
|
862 |
+
assert model_output.shape == target.shape == x_start.shape
|
863 |
+
terms["mse"] = mean_flat((target - model_output) ** 2)
|
864 |
+
if "vb" in terms:
|
865 |
+
terms["loss"] = terms["mse"] + terms["vb"]
|
866 |
+
else:
|
867 |
+
terms["loss"] = terms["mse"]
|
868 |
+
else:
|
869 |
+
raise NotImplementedError(self.loss_type)
|
870 |
+
|
871 |
+
return terms
|
872 |
+
|
873 |
+
def _prior_bpd(self, x_start):
|
874 |
+
"""
|
875 |
+
Get the prior KL term for the variational lower-bound, measured in
|
876 |
+
bits-per-dim.
|
877 |
+
This term can't be optimized, as it only depends on the encoder.
|
878 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
879 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
880 |
+
"""
|
881 |
+
batch_size = x_start.shape[0]
|
882 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
883 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
884 |
+
kl_prior = normal_kl(
|
885 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
886 |
+
)
|
887 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
888 |
+
|
889 |
+
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
890 |
+
"""
|
891 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
892 |
+
as well as other related quantities.
|
893 |
+
:param model: the model to evaluate loss on.
|
894 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
895 |
+
:param clip_denoised: if True, clip denoised samples.
|
896 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
897 |
+
pass to the model. This can be used for conditioning.
|
898 |
+
:return: a dict containing the following keys:
|
899 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
900 |
+
- prior_bpd: the prior term in the lower-bound.
|
901 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
902 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
903 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
904 |
+
"""
|
905 |
+
device = x_start.device
|
906 |
+
batch_size = x_start.shape[0]
|
907 |
+
|
908 |
+
vb = []
|
909 |
+
xstart_mse = []
|
910 |
+
mse = []
|
911 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
912 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
913 |
+
noise = th.randn_like(x_start)
|
914 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
915 |
+
# Calculate VLB term at the current timestep
|
916 |
+
with th.no_grad():
|
917 |
+
out = self._vb_terms_bpd(
|
918 |
+
model,
|
919 |
+
x_start=x_start,
|
920 |
+
x_t=x_t,
|
921 |
+
t=t_batch,
|
922 |
+
clip_denoised=clip_denoised,
|
923 |
+
model_kwargs=model_kwargs,
|
924 |
+
)
|
925 |
+
vb.append(out["output"])
|
926 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
927 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
928 |
+
mse.append(mean_flat((eps - noise) ** 2))
|
929 |
+
|
930 |
+
vb = th.stack(vb, dim=1)
|
931 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
932 |
+
mse = th.stack(mse, dim=1)
|
933 |
+
|
934 |
+
prior_bpd = self._prior_bpd(x_start)
|
935 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
936 |
+
return {
|
937 |
+
"total_bpd": total_bpd,
|
938 |
+
"prior_bpd": prior_bpd,
|
939 |
+
"vb": vb,
|
940 |
+
"xstart_mse": xstart_mse,
|
941 |
+
"mse": mse,
|
942 |
+
}
|
943 |
+
|
944 |
+
|
945 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
946 |
+
"""
|
947 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
948 |
+
:param arr: the 1-D numpy array.
|
949 |
+
:param timesteps: a tensor of indices into the array to extract.
|
950 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
951 |
+
dimension equal to the length of timesteps.
|
952 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
953 |
+
"""
|
954 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
955 |
+
while len(res.shape) < len(broadcast_shape):
|
956 |
+
res = res[..., None]
|
957 |
+
return res + th.zeros(broadcast_shape, device=timesteps.device)
|
diffusion/respace.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
|
9 |
+
from .gaussian_diffusion import GaussianDiffusion
|
10 |
+
|
11 |
+
|
12 |
+
def space_timesteps(num_timesteps, section_counts):
|
13 |
+
"""
|
14 |
+
Create a list of timesteps to use from an original diffusion process,
|
15 |
+
given the number of timesteps we want to take from equally-sized portions
|
16 |
+
of the original process.
|
17 |
+
For example, if there's 300 timesteps and the section counts are [10,15,20]
|
18 |
+
then the first 100 timesteps are strided to be 10 timesteps, the second 100
|
19 |
+
are strided to be 15 timesteps, and the final 100 are strided to be 20.
|
20 |
+
If the stride is a string starting with "ddim", then the fixed striding
|
21 |
+
from the DDIM paper is used, and only one section is allowed.
|
22 |
+
:param num_timesteps: the number of diffusion steps in the original
|
23 |
+
process to divide up.
|
24 |
+
:param section_counts: either a list of numbers, or a string containing
|
25 |
+
comma-separated numbers, indicating the step count
|
26 |
+
per section. As a special case, use "ddimN" where N
|
27 |
+
is a number of steps to use the striding from the
|
28 |
+
DDIM paper.
|
29 |
+
:return: a set of diffusion steps from the original process to use.
|
30 |
+
"""
|
31 |
+
if isinstance(section_counts, str):
|
32 |
+
if section_counts.startswith("ddim"):
|
33 |
+
desired_count = int(section_counts[len("ddim") :])
|
34 |
+
for i in range(1, num_timesteps):
|
35 |
+
if len(range(0, num_timesteps, i)) == desired_count:
|
36 |
+
return set(range(0, num_timesteps, i))
|
37 |
+
raise ValueError(
|
38 |
+
f"cannot create exactly {num_timesteps} steps with an integer stride"
|
39 |
+
)
|
40 |
+
section_counts = [int(x) for x in section_counts.split(",")]
|
41 |
+
size_per = num_timesteps // len(section_counts)
|
42 |
+
extra = num_timesteps % len(section_counts)
|
43 |
+
start_idx = 0
|
44 |
+
all_steps = []
|
45 |
+
for i, section_count in enumerate(section_counts):
|
46 |
+
size = size_per + (1 if i < extra else 0)
|
47 |
+
if size < section_count:
|
48 |
+
raise ValueError(
|
49 |
+
f"cannot divide section of {size} steps into {section_count}"
|
50 |
+
)
|
51 |
+
if section_count <= 1:
|
52 |
+
frac_stride = 1
|
53 |
+
else:
|
54 |
+
frac_stride = (size - 1) / (section_count - 1)
|
55 |
+
cur_idx = 0.0
|
56 |
+
taken_steps = []
|
57 |
+
for _ in range(section_count):
|
58 |
+
taken_steps.append(start_idx + round(cur_idx))
|
59 |
+
cur_idx += frac_stride
|
60 |
+
all_steps += taken_steps
|
61 |
+
start_idx += size
|
62 |
+
return set(all_steps)
|
63 |
+
|
64 |
+
|
65 |
+
class SpacedDiffusion(GaussianDiffusion):
|
66 |
+
"""
|
67 |
+
A diffusion process which can skip steps in a base diffusion process.
|
68 |
+
:param use_timesteps: a collection (sequence or set) of timesteps from the
|
69 |
+
original diffusion process to retain.
|
70 |
+
:param kwargs: the kwargs to create the base diffusion process.
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, use_timesteps, **kwargs):
|
74 |
+
self.use_timesteps = set(use_timesteps)
|
75 |
+
self.timestep_map = []
|
76 |
+
self.original_num_steps = len(kwargs["betas"])
|
77 |
+
|
78 |
+
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
|
79 |
+
last_alpha_cumprod = 1.0
|
80 |
+
new_betas = []
|
81 |
+
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
|
82 |
+
if i in self.use_timesteps:
|
83 |
+
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
|
84 |
+
last_alpha_cumprod = alpha_cumprod
|
85 |
+
self.timestep_map.append(i)
|
86 |
+
kwargs["betas"] = np.array(new_betas)
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
|
89 |
+
def p_mean_variance(
|
90 |
+
self, model, *args, **kwargs
|
91 |
+
): # pylint: disable=signature-differs
|
92 |
+
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
|
93 |
+
|
94 |
+
def training_losses(
|
95 |
+
self, model, *args, **kwargs
|
96 |
+
): # pylint: disable=signature-differs
|
97 |
+
return super().training_losses(self._wrap_model(model), *args, **kwargs)
|
98 |
+
|
99 |
+
def condition_mean(self, cond_fn, *args, **kwargs):
|
100 |
+
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
|
101 |
+
|
102 |
+
def condition_score(self, cond_fn, *args, **kwargs):
|
103 |
+
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
|
104 |
+
|
105 |
+
def _wrap_model(self, model):
|
106 |
+
if isinstance(model, _WrappedModel):
|
107 |
+
return model
|
108 |
+
return _WrappedModel(
|
109 |
+
model, self.timestep_map, self.original_num_steps
|
110 |
+
)
|
111 |
+
|
112 |
+
def _scale_timesteps(self, t):
|
113 |
+
# Scaling is done by the wrapped model.
|
114 |
+
return t
|
115 |
+
|
116 |
+
|
117 |
+
class _WrappedModel:
|
118 |
+
def __init__(self, model, timestep_map, original_num_steps):
|
119 |
+
self.model = model
|
120 |
+
self.timestep_map = timestep_map
|
121 |
+
# self.rescale_timesteps = rescale_timesteps
|
122 |
+
self.original_num_steps = original_num_steps
|
123 |
+
|
124 |
+
def __call__(self, x, ts, **kwargs):
|
125 |
+
map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
|
126 |
+
new_ts = map_tensor[ts]
|
127 |
+
# if self.rescale_timesteps:
|
128 |
+
# new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
|
129 |
+
return self.model(x, new_ts, **kwargs)
|
diffusion/timestep_sampler.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Modified from OpenAI's diffusion repos
|
2 |
+
# GLIDE: https://github.com/openai/glide-text2im/blob/main/glide_text2im/gaussian_diffusion.py
|
3 |
+
# ADM: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion
|
4 |
+
# IDDPM: https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch as th
|
10 |
+
import torch.distributed as dist
|
11 |
+
|
12 |
+
|
13 |
+
def create_named_schedule_sampler(name, diffusion):
|
14 |
+
"""
|
15 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
16 |
+
:param name: the name of the sampler.
|
17 |
+
:param diffusion: the diffusion object to sample for.
|
18 |
+
"""
|
19 |
+
if name == "uniform":
|
20 |
+
return UniformSampler(diffusion)
|
21 |
+
elif name == "loss-second-moment":
|
22 |
+
return LossSecondMomentResampler(diffusion)
|
23 |
+
else:
|
24 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
25 |
+
|
26 |
+
|
27 |
+
class ScheduleSampler(ABC):
|
28 |
+
"""
|
29 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
30 |
+
variance of the objective.
|
31 |
+
By default, samplers perform unbiased importance sampling, in which the
|
32 |
+
objective's mean is unchanged.
|
33 |
+
However, subclasses may override sample() to change how the resampled
|
34 |
+
terms are reweighted, allowing for actual changes in the objective.
|
35 |
+
"""
|
36 |
+
|
37 |
+
@abstractmethod
|
38 |
+
def weights(self):
|
39 |
+
"""
|
40 |
+
Get a numpy array of weights, one per diffusion step.
|
41 |
+
The weights needn't be normalized, but must be positive.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def sample(self, batch_size, device):
|
45 |
+
"""
|
46 |
+
Importance-sample timesteps for a batch.
|
47 |
+
:param batch_size: the number of timesteps.
|
48 |
+
:param device: the torch device to save to.
|
49 |
+
:return: a tuple (timesteps, weights):
|
50 |
+
- timesteps: a tensor of timestep indices.
|
51 |
+
- weights: a tensor of weights to scale the resulting losses.
|
52 |
+
"""
|
53 |
+
w = self.weights()
|
54 |
+
p = w / np.sum(w)
|
55 |
+
indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
|
56 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
57 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
58 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
59 |
+
return indices, weights
|
60 |
+
|
61 |
+
|
62 |
+
class UniformSampler(ScheduleSampler):
|
63 |
+
def __init__(self, diffusion):
|
64 |
+
self.diffusion = diffusion
|
65 |
+
self._weights = np.ones([diffusion.num_timesteps])
|
66 |
+
|
67 |
+
def weights(self):
|
68 |
+
return self._weights
|
69 |
+
|
70 |
+
|
71 |
+
class LossAwareSampler(ScheduleSampler):
|
72 |
+
def update_with_local_losses(self, local_ts, local_losses):
|
73 |
+
"""
|
74 |
+
Update the reweighting using losses from a model.
|
75 |
+
Call this method from each rank with a batch of timesteps and the
|
76 |
+
corresponding losses for each of those timesteps.
|
77 |
+
This method will perform synchronization to make sure all of the ranks
|
78 |
+
maintain the exact same reweighting.
|
79 |
+
:param local_ts: an integer Tensor of timesteps.
|
80 |
+
:param local_losses: a 1D Tensor of losses.
|
81 |
+
"""
|
82 |
+
batch_sizes = [
|
83 |
+
th.tensor([0], dtype=th.int32, device=local_ts.device)
|
84 |
+
for _ in range(dist.get_world_size())
|
85 |
+
]
|
86 |
+
dist.all_gather(
|
87 |
+
batch_sizes,
|
88 |
+
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
|
89 |
+
)
|
90 |
+
|
91 |
+
# Pad all_gather batches to be the maximum batch size.
|
92 |
+
batch_sizes = [x.item() for x in batch_sizes]
|
93 |
+
max_bs = max(batch_sizes)
|
94 |
+
|
95 |
+
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
|
96 |
+
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
|
97 |
+
dist.all_gather(timestep_batches, local_ts)
|
98 |
+
dist.all_gather(loss_batches, local_losses)
|
99 |
+
timesteps = [
|
100 |
+
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
|
101 |
+
]
|
102 |
+
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
|
103 |
+
self.update_with_all_losses(timesteps, losses)
|
104 |
+
|
105 |
+
@abstractmethod
|
106 |
+
def update_with_all_losses(self, ts, losses):
|
107 |
+
"""
|
108 |
+
Update the reweighting using losses from a model.
|
109 |
+
Sub-classes should override this method to update the reweighting
|
110 |
+
using losses from the model.
|
111 |
+
This method directly updates the reweighting without synchronizing
|
112 |
+
between workers. It is called by update_with_local_losses from all
|
113 |
+
ranks with identical arguments. Thus, it should have deterministic
|
114 |
+
behavior to maintain state across workers.
|
115 |
+
:param ts: a list of int timesteps.
|
116 |
+
:param losses: a list of float losses, one per timestep.
|
117 |
+
"""
|
118 |
+
|
119 |
+
|
120 |
+
class LossSecondMomentResampler(LossAwareSampler):
|
121 |
+
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
|
122 |
+
self.diffusion = diffusion
|
123 |
+
self.history_per_term = history_per_term
|
124 |
+
self.uniform_prob = uniform_prob
|
125 |
+
self._loss_history = np.zeros(
|
126 |
+
[diffusion.num_timesteps, history_per_term], dtype=np.float64
|
127 |
+
)
|
128 |
+
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
|
129 |
+
|
130 |
+
def weights(self):
|
131 |
+
if not self._warmed_up():
|
132 |
+
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
|
133 |
+
weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
|
134 |
+
weights /= np.sum(weights)
|
135 |
+
weights *= 1 - self.uniform_prob
|
136 |
+
weights += self.uniform_prob / len(weights)
|
137 |
+
return weights
|
138 |
+
|
139 |
+
def update_with_all_losses(self, ts, losses):
|
140 |
+
for t, loss in zip(ts, losses):
|
141 |
+
if self._loss_counts[t] == self.history_per_term:
|
142 |
+
# Shift out the oldest loss term.
|
143 |
+
self._loss_history[t, :-1] = self._loss_history[t, 1:]
|
144 |
+
self._loss_history[t, -1] = loss
|
145 |
+
else:
|
146 |
+
self._loss_history[t, self._loss_counts[t]] = loss
|
147 |
+
self._loss_counts[t] += 1
|
148 |
+
|
149 |
+
def _warmed_up(self):
|
150 |
+
return (self._loss_counts == self.history_per_term).all()
|
example_images/000.png
ADDED
example_images/001.png
ADDED
example_images/002.png
ADDED
example_images/003.png
ADDED
example_images/004.png
ADDED
example_images/005.png
ADDED
example_images/006.png
ADDED
example_images/007.png
ADDED
example_images/008.png
ADDED
example_images/009.png
ADDED
example_images/010.png
ADDED
example_images/011.png
ADDED
example_images/012.png
ADDED
example_images/013.png
ADDED
example_images/014.png
ADDED
example_images/015.png
ADDED
example_images/016.png
ADDED
example_images/018.png
ADDED
example_images/019.png
ADDED
example_images/020.png
ADDED
example_images/021.png
ADDED
example_images/022.png
ADDED
example_images/023.png
ADDED
example_images/024.png
ADDED
model.py
ADDED
@@ -0,0 +1,1992 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
3 |
+
import os
|
4 |
+
import math
|
5 |
+
import json
|
6 |
+
from glob import glob
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
16 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
17 |
+
from diffusers.utils import BaseOutput, logging, is_torch_version
|
18 |
+
from diffusers.models.modeling_utils import ModelMixin
|
19 |
+
from diffusers.models.unet_2d_blocks import (
|
20 |
+
CrossAttnDownBlock2D,
|
21 |
+
CrossAttnUpBlock2D,
|
22 |
+
DownBlock2D,
|
23 |
+
UNetMidBlock2DCrossAttn,
|
24 |
+
UNetMidBlock2DSimpleCrossAttn,
|
25 |
+
UpBlock2D,
|
26 |
+
get_down_block as gdb,
|
27 |
+
get_up_block as gub,
|
28 |
+
)
|
29 |
+
from diffusers.models.embeddings import (
|
30 |
+
GaussianFourierProjection,
|
31 |
+
ImageHintTimeEmbedding,
|
32 |
+
ImageProjection,
|
33 |
+
ImageTimeEmbedding,
|
34 |
+
TextImageProjection,
|
35 |
+
TextImageTimeEmbedding,
|
36 |
+
TextTimeEmbedding,
|
37 |
+
TimestepEmbedding,
|
38 |
+
Timesteps,
|
39 |
+
)
|
40 |
+
from diffusers.models.activations import get_activation
|
41 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor, Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
42 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
43 |
+
from diffusers.models.transformer_2d import Transformer2DModel
|
44 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
45 |
+
|
46 |
+
|
47 |
+
class CrossAttnDownBlock2DWithFlow(nn.Module):
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
in_channels: int,
|
51 |
+
out_channels: int,
|
52 |
+
temb_channels: int,
|
53 |
+
flow_channels: int, # Added
|
54 |
+
dropout: float = 0.0,
|
55 |
+
num_layers: int = 1,
|
56 |
+
transformer_layers_per_block: int = 1,
|
57 |
+
resnet_eps: float = 1e-6,
|
58 |
+
resnet_time_scale_shift: str = "default",
|
59 |
+
resnet_act_fn: str = "swish",
|
60 |
+
resnet_groups: int = 32,
|
61 |
+
resnet_pre_norm: bool = True,
|
62 |
+
num_attention_heads=1,
|
63 |
+
cross_attention_dim=1280,
|
64 |
+
output_scale_factor=1.0,
|
65 |
+
downsample_padding=1,
|
66 |
+
add_downsample=True,
|
67 |
+
dual_cross_attention=False,
|
68 |
+
use_linear_projection=False,
|
69 |
+
only_cross_attention=False,
|
70 |
+
upcast_attention=False,
|
71 |
+
):
|
72 |
+
super().__init__()
|
73 |
+
resnets = []
|
74 |
+
attentions = []
|
75 |
+
flow_convs = []
|
76 |
+
|
77 |
+
self.has_cross_attention = True
|
78 |
+
self.num_attention_heads = num_attention_heads
|
79 |
+
|
80 |
+
for i in range(num_layers):
|
81 |
+
in_channels = in_channels if i == 0 else out_channels
|
82 |
+
resnets.append(
|
83 |
+
ResnetBlock2D(
|
84 |
+
in_channels=in_channels,
|
85 |
+
out_channels=out_channels,
|
86 |
+
temb_channels=temb_channels,
|
87 |
+
eps=resnet_eps,
|
88 |
+
groups=resnet_groups,
|
89 |
+
dropout=dropout,
|
90 |
+
time_embedding_norm=resnet_time_scale_shift,
|
91 |
+
non_linearity=resnet_act_fn,
|
92 |
+
output_scale_factor=output_scale_factor,
|
93 |
+
pre_norm=resnet_pre_norm,
|
94 |
+
)
|
95 |
+
)
|
96 |
+
if not dual_cross_attention:
|
97 |
+
attentions.append(
|
98 |
+
Transformer2DModel(
|
99 |
+
num_attention_heads,
|
100 |
+
out_channels // num_attention_heads,
|
101 |
+
in_channels=out_channels,
|
102 |
+
num_layers=transformer_layers_per_block,
|
103 |
+
cross_attention_dim=cross_attention_dim,
|
104 |
+
norm_num_groups=resnet_groups,
|
105 |
+
use_linear_projection=use_linear_projection,
|
106 |
+
only_cross_attention=only_cross_attention,
|
107 |
+
upcast_attention=upcast_attention,
|
108 |
+
)
|
109 |
+
)
|
110 |
+
else:
|
111 |
+
attentions.append(
|
112 |
+
DualTransformer2DModel(
|
113 |
+
num_attention_heads,
|
114 |
+
out_channels // num_attention_heads,
|
115 |
+
in_channels=out_channels,
|
116 |
+
num_layers=1,
|
117 |
+
cross_attention_dim=cross_attention_dim,
|
118 |
+
norm_num_groups=resnet_groups,
|
119 |
+
)
|
120 |
+
)
|
121 |
+
flow_convs.append(
|
122 |
+
nn.Conv2d(
|
123 |
+
flow_channels, out_channels, kernel_size=3, padding=1, bias=False,
|
124 |
+
)
|
125 |
+
)
|
126 |
+
self.attentions = nn.ModuleList(attentions)
|
127 |
+
self.resnets = nn.ModuleList(resnets)
|
128 |
+
self.flow_convs = nn.ModuleList(flow_convs)
|
129 |
+
|
130 |
+
if add_downsample:
|
131 |
+
self.downsamplers = nn.ModuleList(
|
132 |
+
[
|
133 |
+
Downsample2D(
|
134 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
135 |
+
)
|
136 |
+
]
|
137 |
+
)
|
138 |
+
else:
|
139 |
+
self.downsamplers = None
|
140 |
+
|
141 |
+
self.gradient_checkpointing = False
|
142 |
+
|
143 |
+
def forward(
|
144 |
+
self,
|
145 |
+
hidden_states: torch.FloatTensor,
|
146 |
+
temb: Optional[torch.FloatTensor] = None,
|
147 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
148 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
149 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
150 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
151 |
+
additional_residuals=None,
|
152 |
+
flow: Optional[torch.FloatTensor] = None, # Added
|
153 |
+
):
|
154 |
+
output_states = ()
|
155 |
+
|
156 |
+
blocks = list(zip(self.resnets, self.attentions, self.flow_convs))
|
157 |
+
|
158 |
+
for i, (resnet, attn, flow_conv) in enumerate(blocks):
|
159 |
+
if self.training and self.gradient_checkpointing:
|
160 |
+
|
161 |
+
def create_custom_forward(module, return_dict=None):
|
162 |
+
def custom_forward(*inputs):
|
163 |
+
if return_dict is not None:
|
164 |
+
return module(*inputs, return_dict=return_dict)
|
165 |
+
else:
|
166 |
+
return module(*inputs)
|
167 |
+
|
168 |
+
return custom_forward
|
169 |
+
|
170 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
171 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
172 |
+
create_custom_forward(resnet),
|
173 |
+
hidden_states,
|
174 |
+
temb,
|
175 |
+
**ckpt_kwargs,
|
176 |
+
)
|
177 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
178 |
+
create_custom_forward(attn, return_dict=False),
|
179 |
+
hidden_states,
|
180 |
+
encoder_hidden_states,
|
181 |
+
None, # timestep
|
182 |
+
None, # class_labels
|
183 |
+
cross_attention_kwargs,
|
184 |
+
attention_mask,
|
185 |
+
encoder_attention_mask,
|
186 |
+
**ckpt_kwargs,
|
187 |
+
)[0]
|
188 |
+
else:
|
189 |
+
hidden_states = resnet(hidden_states, temb)
|
190 |
+
if flow is not None:
|
191 |
+
hidden_states = hidden_states + flow_conv(flow)
|
192 |
+
hidden_states = attn(
|
193 |
+
hidden_states,
|
194 |
+
encoder_hidden_states=encoder_hidden_states,
|
195 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
196 |
+
attention_mask=attention_mask,
|
197 |
+
encoder_attention_mask=encoder_attention_mask,
|
198 |
+
return_dict=False,
|
199 |
+
)[0]
|
200 |
+
|
201 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
202 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
203 |
+
hidden_states = hidden_states + additional_residuals
|
204 |
+
|
205 |
+
output_states = output_states + (hidden_states,)
|
206 |
+
|
207 |
+
if self.downsamplers is not None:
|
208 |
+
for downsampler in self.downsamplers:
|
209 |
+
hidden_states = downsampler(hidden_states)
|
210 |
+
|
211 |
+
output_states = output_states + (hidden_states,)
|
212 |
+
|
213 |
+
return hidden_states, output_states
|
214 |
+
|
215 |
+
|
216 |
+
class UNetMidBlock2DCrossAttnWithFlow(nn.Module):
|
217 |
+
def __init__(
|
218 |
+
self,
|
219 |
+
in_channels: int,
|
220 |
+
temb_channels: int,
|
221 |
+
flow_channels: int, # Added
|
222 |
+
dropout: float = 0.0,
|
223 |
+
num_layers: int = 1,
|
224 |
+
transformer_layers_per_block: int = 1,
|
225 |
+
resnet_eps: float = 1e-6,
|
226 |
+
resnet_time_scale_shift: str = "default",
|
227 |
+
resnet_act_fn: str = "swish",
|
228 |
+
resnet_groups: int = 32,
|
229 |
+
resnet_pre_norm: bool = True,
|
230 |
+
num_attention_heads=1,
|
231 |
+
output_scale_factor=1.0,
|
232 |
+
cross_attention_dim=1280,
|
233 |
+
dual_cross_attention=False,
|
234 |
+
use_linear_projection=False,
|
235 |
+
upcast_attention=False,
|
236 |
+
):
|
237 |
+
super().__init__()
|
238 |
+
|
239 |
+
self.has_cross_attention = True
|
240 |
+
self.num_attention_heads = num_attention_heads
|
241 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
242 |
+
|
243 |
+
# there is always at least one resnet
|
244 |
+
resnets = [
|
245 |
+
ResnetBlock2D(
|
246 |
+
in_channels=in_channels,
|
247 |
+
out_channels=in_channels,
|
248 |
+
temb_channels=temb_channels,
|
249 |
+
eps=resnet_eps,
|
250 |
+
groups=resnet_groups,
|
251 |
+
dropout=dropout,
|
252 |
+
time_embedding_norm=resnet_time_scale_shift,
|
253 |
+
non_linearity=resnet_act_fn,
|
254 |
+
output_scale_factor=output_scale_factor,
|
255 |
+
pre_norm=resnet_pre_norm,
|
256 |
+
)
|
257 |
+
]
|
258 |
+
flow_convs = [
|
259 |
+
nn.Conv2d(
|
260 |
+
flow_channels, in_channels, kernel_size=3, padding=1, bias=False,
|
261 |
+
)
|
262 |
+
]
|
263 |
+
attentions = []
|
264 |
+
|
265 |
+
for _ in range(num_layers):
|
266 |
+
if not dual_cross_attention:
|
267 |
+
attentions.append(
|
268 |
+
Transformer2DModel(
|
269 |
+
num_attention_heads,
|
270 |
+
in_channels // num_attention_heads,
|
271 |
+
in_channels=in_channels,
|
272 |
+
num_layers=transformer_layers_per_block,
|
273 |
+
cross_attention_dim=cross_attention_dim,
|
274 |
+
norm_num_groups=resnet_groups,
|
275 |
+
use_linear_projection=use_linear_projection,
|
276 |
+
upcast_attention=upcast_attention,
|
277 |
+
)
|
278 |
+
)
|
279 |
+
else:
|
280 |
+
attentions.append(
|
281 |
+
DualTransformer2DModel(
|
282 |
+
num_attention_heads,
|
283 |
+
in_channels // num_attention_heads,
|
284 |
+
in_channels=in_channels,
|
285 |
+
num_layers=1,
|
286 |
+
cross_attention_dim=cross_attention_dim,
|
287 |
+
norm_num_groups=resnet_groups,
|
288 |
+
)
|
289 |
+
)
|
290 |
+
resnets.append(
|
291 |
+
ResnetBlock2D(
|
292 |
+
in_channels=in_channels,
|
293 |
+
out_channels=in_channels,
|
294 |
+
temb_channels=temb_channels,
|
295 |
+
eps=resnet_eps,
|
296 |
+
groups=resnet_groups,
|
297 |
+
dropout=dropout,
|
298 |
+
time_embedding_norm=resnet_time_scale_shift,
|
299 |
+
non_linearity=resnet_act_fn,
|
300 |
+
output_scale_factor=output_scale_factor,
|
301 |
+
pre_norm=resnet_pre_norm,
|
302 |
+
)
|
303 |
+
)
|
304 |
+
flow_convs.append(
|
305 |
+
nn.Conv2d(
|
306 |
+
flow_channels, in_channels, kernel_size=3, padding=1, bias=False,
|
307 |
+
)
|
308 |
+
)
|
309 |
+
|
310 |
+
self.attentions = nn.ModuleList(attentions)
|
311 |
+
self.resnets = nn.ModuleList(resnets)
|
312 |
+
self.flow_convs = nn.ModuleList(flow_convs)
|
313 |
+
|
314 |
+
def forward(
|
315 |
+
self,
|
316 |
+
hidden_states: torch.FloatTensor,
|
317 |
+
temb: Optional[torch.FloatTensor] = None,
|
318 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
319 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
320 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
321 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
322 |
+
flow: Optional[torch.FloatTensor] = None, # Added
|
323 |
+
) -> torch.FloatTensor:
|
324 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
325 |
+
hidden_states = hidden_states + self.flow_convs[0](flow)
|
326 |
+
for attn, resnet, flow_conv in zip(self.attentions, self.resnets[1:], self.flow_convs[1:]):
|
327 |
+
hidden_states = attn(
|
328 |
+
hidden_states,
|
329 |
+
encoder_hidden_states=encoder_hidden_states,
|
330 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
331 |
+
attention_mask=attention_mask,
|
332 |
+
encoder_attention_mask=encoder_attention_mask,
|
333 |
+
return_dict=False,
|
334 |
+
)[0]
|
335 |
+
hidden_states = resnet(hidden_states, temb)
|
336 |
+
hidden_states = hidden_states + flow_conv(flow)
|
337 |
+
|
338 |
+
return hidden_states
|
339 |
+
|
340 |
+
|
341 |
+
class CrossAttnUpBlock2DWithFlow(nn.Module):
|
342 |
+
def __init__(
|
343 |
+
self,
|
344 |
+
in_channels: int,
|
345 |
+
out_channels: int,
|
346 |
+
prev_output_channel: int,
|
347 |
+
temb_channels: int,
|
348 |
+
flow_channels: int, # Added
|
349 |
+
dropout: float = 0.0,
|
350 |
+
num_layers: int = 1,
|
351 |
+
transformer_layers_per_block: int = 1,
|
352 |
+
resnet_eps: float = 1e-6,
|
353 |
+
resnet_time_scale_shift: str = "default",
|
354 |
+
resnet_act_fn: str = "swish",
|
355 |
+
resnet_groups: int = 32,
|
356 |
+
resnet_pre_norm: bool = True,
|
357 |
+
num_attention_heads=1,
|
358 |
+
cross_attention_dim=1280,
|
359 |
+
output_scale_factor=1.0,
|
360 |
+
add_upsample=True,
|
361 |
+
dual_cross_attention=False,
|
362 |
+
use_linear_projection=False,
|
363 |
+
only_cross_attention=False,
|
364 |
+
upcast_attention=False,
|
365 |
+
):
|
366 |
+
super().__init__()
|
367 |
+
resnets = []
|
368 |
+
attentions = []
|
369 |
+
flow_convs = []
|
370 |
+
|
371 |
+
self.has_cross_attention = True
|
372 |
+
self.num_attention_heads = num_attention_heads
|
373 |
+
|
374 |
+
for i in range(num_layers):
|
375 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
376 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
377 |
+
|
378 |
+
resnets.append(
|
379 |
+
ResnetBlock2D(
|
380 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
381 |
+
out_channels=out_channels,
|
382 |
+
temb_channels=temb_channels,
|
383 |
+
eps=resnet_eps,
|
384 |
+
groups=resnet_groups,
|
385 |
+
dropout=dropout,
|
386 |
+
time_embedding_norm=resnet_time_scale_shift,
|
387 |
+
non_linearity=resnet_act_fn,
|
388 |
+
output_scale_factor=output_scale_factor,
|
389 |
+
pre_norm=resnet_pre_norm,
|
390 |
+
)
|
391 |
+
)
|
392 |
+
if not dual_cross_attention:
|
393 |
+
attentions.append(
|
394 |
+
Transformer2DModel(
|
395 |
+
num_attention_heads,
|
396 |
+
out_channels // num_attention_heads,
|
397 |
+
in_channels=out_channels,
|
398 |
+
num_layers=transformer_layers_per_block,
|
399 |
+
cross_attention_dim=cross_attention_dim,
|
400 |
+
norm_num_groups=resnet_groups,
|
401 |
+
use_linear_projection=use_linear_projection,
|
402 |
+
only_cross_attention=only_cross_attention,
|
403 |
+
upcast_attention=upcast_attention,
|
404 |
+
)
|
405 |
+
)
|
406 |
+
else:
|
407 |
+
attentions.append(
|
408 |
+
DualTransformer2DModel(
|
409 |
+
num_attention_heads,
|
410 |
+
out_channels // num_attention_heads,
|
411 |
+
in_channels=out_channels,
|
412 |
+
num_layers=1,
|
413 |
+
cross_attention_dim=cross_attention_dim,
|
414 |
+
norm_num_groups=resnet_groups,
|
415 |
+
)
|
416 |
+
)
|
417 |
+
flow_convs.append(
|
418 |
+
nn.Conv2d(
|
419 |
+
flow_channels, out_channels, kernel_size=3, padding=1, bias=False,
|
420 |
+
)
|
421 |
+
)
|
422 |
+
self.attentions = nn.ModuleList(attentions)
|
423 |
+
self.resnets = nn.ModuleList(resnets)
|
424 |
+
self.flow_convs = nn.ModuleList(flow_convs)
|
425 |
+
|
426 |
+
if add_upsample:
|
427 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
428 |
+
else:
|
429 |
+
self.upsamplers = None
|
430 |
+
|
431 |
+
self.gradient_checkpointing = False
|
432 |
+
|
433 |
+
def forward(
|
434 |
+
self,
|
435 |
+
hidden_states: torch.FloatTensor,
|
436 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
437 |
+
temb: Optional[torch.FloatTensor] = None,
|
438 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
439 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
440 |
+
upsample_size: Optional[int] = None,
|
441 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
442 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
443 |
+
flow: Optional[torch.FloatTensor] = None, # Added
|
444 |
+
):
|
445 |
+
for resnet, attn, flow_conv in zip(self.resnets, self.attentions, self.flow_convs):
|
446 |
+
# pop res hidden states
|
447 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
448 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
449 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
450 |
+
|
451 |
+
if self.training and self.gradient_checkpointing:
|
452 |
+
|
453 |
+
def create_custom_forward(module, return_dict=None):
|
454 |
+
def custom_forward(*inputs):
|
455 |
+
if return_dict is not None:
|
456 |
+
return module(*inputs, return_dict=return_dict)
|
457 |
+
else:
|
458 |
+
return module(*inputs)
|
459 |
+
|
460 |
+
return custom_forward
|
461 |
+
|
462 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
463 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
464 |
+
create_custom_forward(resnet),
|
465 |
+
hidden_states,
|
466 |
+
temb,
|
467 |
+
**ckpt_kwargs,
|
468 |
+
)
|
469 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
470 |
+
create_custom_forward(attn, return_dict=False),
|
471 |
+
hidden_states,
|
472 |
+
encoder_hidden_states,
|
473 |
+
None, # timestep
|
474 |
+
None, # class_labels
|
475 |
+
cross_attention_kwargs,
|
476 |
+
attention_mask,
|
477 |
+
encoder_attention_mask,
|
478 |
+
**ckpt_kwargs,
|
479 |
+
)[0]
|
480 |
+
else:
|
481 |
+
hidden_states = resnet(hidden_states, temb)
|
482 |
+
hidden_states = hidden_states + flow_conv(flow)
|
483 |
+
hidden_states = attn(
|
484 |
+
hidden_states,
|
485 |
+
encoder_hidden_states=encoder_hidden_states,
|
486 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
487 |
+
attention_mask=attention_mask,
|
488 |
+
encoder_attention_mask=encoder_attention_mask,
|
489 |
+
return_dict=False,
|
490 |
+
)[0]
|
491 |
+
|
492 |
+
if self.upsamplers is not None:
|
493 |
+
for upsampler in self.upsamplers:
|
494 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
495 |
+
|
496 |
+
return hidden_states
|
497 |
+
|
498 |
+
|
499 |
+
|
500 |
+
def get_sin_cos_pos_embed(embed_dim: int, x: torch.Tensor):
|
501 |
+
bsz, _ = x.shape
|
502 |
+
x = x.reshape(-1)[:, None]
|
503 |
+
div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim)).to(x.device)
|
504 |
+
pos = x * div_term
|
505 |
+
pos = torch.cat([torch.sin(pos), torch.cos(pos)], dim=-1).reshape(bsz, -1)
|
506 |
+
return pos
|
507 |
+
|
508 |
+
|
509 |
+
def get_down_block(
|
510 |
+
with_concatenated_flow: bool = False,
|
511 |
+
*args,
|
512 |
+
**kwargs,
|
513 |
+
):
|
514 |
+
if not with_concatenated_flow or args[0] == "DownBlock2D":
|
515 |
+
kwargs.pop("flow_channels", None)
|
516 |
+
return gdb(*args, **kwargs)
|
517 |
+
elif args[0] == "CrossAttnDownBlock2D":
|
518 |
+
kwargs.pop("downsample_type", None)
|
519 |
+
kwargs.pop("attention_head_dim", None)
|
520 |
+
kwargs.pop("resnet_skip_time_act", None)
|
521 |
+
kwargs.pop("resnet_out_scale_factor", None)
|
522 |
+
kwargs.pop("cross_attention_norm", None)
|
523 |
+
return CrossAttnDownBlock2DWithFlow(*args[1:], **kwargs)
|
524 |
+
else:
|
525 |
+
raise ValueError(f"Unknown down block type: {args[0]}")
|
526 |
+
|
527 |
+
|
528 |
+
def get_up_block(
|
529 |
+
with_concatenated_flow: bool = False,
|
530 |
+
*args,
|
531 |
+
**kwargs,
|
532 |
+
):
|
533 |
+
if not with_concatenated_flow or args[0] == "UpBlock2D":
|
534 |
+
kwargs.pop("flow_channels", None)
|
535 |
+
return gub(*args, **kwargs)
|
536 |
+
elif args[0] == "CrossAttnUpBlock2D":
|
537 |
+
kwargs.pop("upsample_type", None)
|
538 |
+
kwargs.pop("attention_head_dim", None)
|
539 |
+
kwargs.pop("resnet_skip_time_act", None)
|
540 |
+
kwargs.pop("resnet_out_scale_factor", None)
|
541 |
+
kwargs.pop("cross_attention_norm", None)
|
542 |
+
return CrossAttnUpBlock2DWithFlow(*args[1:], **kwargs)
|
543 |
+
else:
|
544 |
+
raise ValueError(f"Unknown up block type: {args[0]}")
|
545 |
+
|
546 |
+
|
547 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
548 |
+
|
549 |
+
|
550 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
551 |
+
"""
|
552 |
+
Create a 1D, 2D, or 3D average pooling module.
|
553 |
+
"""
|
554 |
+
if dims == 1:
|
555 |
+
return nn.AvgPool1d(*args, **kwargs)
|
556 |
+
elif dims == 2:
|
557 |
+
return nn.AvgPool2d(*args, **kwargs)
|
558 |
+
elif dims == 3:
|
559 |
+
return nn.AvgPool3d(*args, **kwargs)
|
560 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
561 |
+
|
562 |
+
|
563 |
+
def conv_nd(dims, *args, **kwargs):
|
564 |
+
"""
|
565 |
+
Create a 1D, 2D, or 3D convolution module.
|
566 |
+
"""
|
567 |
+
if dims == 1:
|
568 |
+
return nn.Conv1d(*args, **kwargs)
|
569 |
+
elif dims == 2:
|
570 |
+
return nn.Conv2d(*args, **kwargs)
|
571 |
+
elif dims == 3:
|
572 |
+
return nn.Conv3d(*args, **kwargs)
|
573 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
574 |
+
|
575 |
+
|
576 |
+
class Downsample(nn.Module):
|
577 |
+
"""
|
578 |
+
A downsampling layer with an optional convolution.
|
579 |
+
:param channels: channels in the inputs and outputs.
|
580 |
+
:param use_conv: a bool determining if a convolution is applied.
|
581 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
582 |
+
downsampling occurs in the inner-two dimensions.
|
583 |
+
"""
|
584 |
+
|
585 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
|
586 |
+
super().__init__()
|
587 |
+
self.channels = channels
|
588 |
+
self.out_channels = out_channels or channels
|
589 |
+
self.use_conv = use_conv
|
590 |
+
self.dims = dims
|
591 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
592 |
+
if use_conv:
|
593 |
+
self.op = conv_nd(
|
594 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
assert self.channels == self.out_channels
|
598 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
599 |
+
|
600 |
+
def forward(self, x):
|
601 |
+
assert x.shape[1] == self.channels
|
602 |
+
return self.op(x)
|
603 |
+
|
604 |
+
|
605 |
+
class ResnetBlock(nn.Module):
|
606 |
+
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
|
607 |
+
super().__init__()
|
608 |
+
ps = ksize // 2
|
609 |
+
if in_c != out_c or sk == False:
|
610 |
+
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
|
611 |
+
else:
|
612 |
+
# print('n_in')
|
613 |
+
self.in_conv = None
|
614 |
+
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
|
615 |
+
self.act = nn.ReLU()
|
616 |
+
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
617 |
+
if sk == False:
|
618 |
+
# self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) # edit by zhouxiawang
|
619 |
+
self.skep = nn.Conv2d(out_c, out_c, ksize, 1, ps)
|
620 |
+
else:
|
621 |
+
self.skep = None
|
622 |
+
|
623 |
+
self.down = down
|
624 |
+
if self.down == True:
|
625 |
+
self.down_opt = Downsample(in_c, use_conv=use_conv)
|
626 |
+
|
627 |
+
def forward(self, x):
|
628 |
+
if self.down == True:
|
629 |
+
x = self.down_opt(x)
|
630 |
+
if self.in_conv is not None: # edit
|
631 |
+
x = self.in_conv(x)
|
632 |
+
|
633 |
+
h = self.block1(x)
|
634 |
+
h = self.act(h)
|
635 |
+
h = self.block2(h)
|
636 |
+
if self.skep is not None:
|
637 |
+
return h + self.skep(x)
|
638 |
+
else:
|
639 |
+
return h + x
|
640 |
+
|
641 |
+
|
642 |
+
class Adapter(nn.Module):
|
643 |
+
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True):
|
644 |
+
super(Adapter, self).__init__()
|
645 |
+
self.unshuffle = nn.PixelUnshuffle(16)
|
646 |
+
self.channels = channels
|
647 |
+
self.nums_rb = nums_rb
|
648 |
+
self.body = []
|
649 |
+
for i in range(len(channels)):
|
650 |
+
for j in range(nums_rb):
|
651 |
+
if (i != 0) and (j == 0):
|
652 |
+
self.body.append(
|
653 |
+
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
|
654 |
+
else:
|
655 |
+
self.body.append(
|
656 |
+
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
|
657 |
+
self.body = nn.ModuleList(self.body)
|
658 |
+
self.conv_in = nn.Conv2d(cin * 16 * 16, channels[0], 3, 1, 1)
|
659 |
+
|
660 |
+
def forward(self, x):
|
661 |
+
# unshuffle
|
662 |
+
x = self.unshuffle(x)
|
663 |
+
# extract features
|
664 |
+
features = []
|
665 |
+
x = self.conv_in(x)
|
666 |
+
for i in range(len(self.channels)):
|
667 |
+
for j in range(self.nums_rb):
|
668 |
+
idx = i * self.nums_rb + j
|
669 |
+
x = self.body[idx](x)
|
670 |
+
features.append(x)
|
671 |
+
|
672 |
+
return features
|
673 |
+
|
674 |
+
|
675 |
+
class OneSidedAttnProcessor:
|
676 |
+
r"""
|
677 |
+
Processor for performing attention-related computations where the key and value are always from the upper half batch
|
678 |
+
"""
|
679 |
+
|
680 |
+
def __call__(
|
681 |
+
self,
|
682 |
+
attn: Attention,
|
683 |
+
hidden_states,
|
684 |
+
encoder_hidden_states=None,
|
685 |
+
attention_mask=None,
|
686 |
+
temb=None,
|
687 |
+
):
|
688 |
+
assert encoder_hidden_states is None
|
689 |
+
residual = hidden_states
|
690 |
+
|
691 |
+
if attn.spatial_norm is not None:
|
692 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
693 |
+
|
694 |
+
input_ndim = hidden_states.ndim
|
695 |
+
|
696 |
+
if input_ndim == 4:
|
697 |
+
batch_size, channel, height, width = hidden_states.shape
|
698 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
699 |
+
|
700 |
+
batch_size, sequence_length, _ = (
|
701 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
702 |
+
)
|
703 |
+
|
704 |
+
assert batch_size % 2 == 0, "batch size must be even"
|
705 |
+
half_batch_size = batch_size // 2
|
706 |
+
hidden_states_1, hidden_states_2 = hidden_states.chunk(2, dim=0)
|
707 |
+
|
708 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, half_batch_size)
|
709 |
+
|
710 |
+
if attn.group_norm is not None:
|
711 |
+
hidden_states_1 = attn.group_norm(hidden_states_1.transpose(1, 2)).transpose(1, 2)
|
712 |
+
hidden_states_2 = attn.group_norm(hidden_states_2.transpose(1, 2)).transpose(1, 2)
|
713 |
+
|
714 |
+
query_1 = attn.to_q(hidden_states_1)
|
715 |
+
query_2 = attn.to_q(hidden_states_2)
|
716 |
+
key = attn.to_k(hidden_states_1)
|
717 |
+
value = attn.to_v(hidden_states_1)
|
718 |
+
|
719 |
+
query = torch.cat([query_1, query_2], dim=0)
|
720 |
+
key = torch.cat([key, key], dim=0)
|
721 |
+
value = torch.cat([value, value], dim=0)
|
722 |
+
|
723 |
+
query = attn.head_to_batch_dim(query)
|
724 |
+
key = attn.head_to_batch_dim(key)
|
725 |
+
value = attn.head_to_batch_dim(value)
|
726 |
+
|
727 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
728 |
+
hidden_states = torch.bmm(attention_probs, value)
|
729 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
730 |
+
|
731 |
+
# linear proj
|
732 |
+
hidden_states = attn.to_out[0](hidden_states)
|
733 |
+
# dropout
|
734 |
+
hidden_states = attn.to_out[1](hidden_states)
|
735 |
+
|
736 |
+
if input_ndim == 4:
|
737 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
738 |
+
|
739 |
+
if attn.residual_connection:
|
740 |
+
hidden_states = hidden_states + residual
|
741 |
+
|
742 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
743 |
+
|
744 |
+
return hidden_states
|
745 |
+
|
746 |
+
|
747 |
+
class UNet2DDragConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
748 |
+
r"""
|
749 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
750 |
+
shaped output.
|
751 |
+
|
752 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
753 |
+
for all models (such as downloading or saving).
|
754 |
+
|
755 |
+
Parameters:
|
756 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
757 |
+
Height and width of input/output sample.
|
758 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
759 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
760 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
761 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
762 |
+
Whether to flip the sin to cos in the time embedding.
|
763 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
764 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
765 |
+
The tuple of downsample blocks to use.
|
766 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
767 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
768 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
769 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
770 |
+
The tuple of upsample blocks to use.
|
771 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
772 |
+
Whether to include self-attention in the basic transformer blocks, see
|
773 |
+
[`~models.attention.BasicTransformerBlock`].
|
774 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
775 |
+
The tuple of output channels for each block.
|
776 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
777 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
778 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
779 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
780 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
781 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
782 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
783 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
784 |
+
The dimension of the cross attention features.
|
785 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
786 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
787 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
788 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
789 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
790 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
791 |
+
dimension to `cross_attention_dim`.
|
792 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
793 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
794 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
795 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
796 |
+
num_attention_heads (`int`, *optional*):
|
797 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
798 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
799 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
800 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
801 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
802 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
803 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
804 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
805 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
806 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
807 |
+
Dimension for the timestep embeddings.
|
808 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
809 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
810 |
+
class conditioning with `class_embed_type` equal to `None`.
|
811 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
812 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
813 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
814 |
+
An optional override for the dimension of the projected time embedding.
|
815 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
816 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
817 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
818 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
819 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
820 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
821 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
822 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
823 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
824 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
825 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
826 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
827 |
+
embeddings with the class embeddings.
|
828 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
829 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
830 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
831 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
832 |
+
otherwise.
|
833 |
+
"""
|
834 |
+
|
835 |
+
_supports_gradient_checkpointing = True
|
836 |
+
|
837 |
+
@register_to_config
|
838 |
+
def __init__(
|
839 |
+
self,
|
840 |
+
sample_size: Optional[int] = None,
|
841 |
+
in_channels: int = 4,
|
842 |
+
flow_channels: int = 3,
|
843 |
+
out_channels: int = 4,
|
844 |
+
center_input_sample: bool = False,
|
845 |
+
flip_sin_to_cos: bool = True,
|
846 |
+
freq_shift: int = 0,
|
847 |
+
down_block_types: Tuple[str] = (
|
848 |
+
"CrossAttnDownBlock2D",
|
849 |
+
"CrossAttnDownBlock2D",
|
850 |
+
"CrossAttnDownBlock2D",
|
851 |
+
"DownBlock2D",
|
852 |
+
),
|
853 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
854 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
855 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
856 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
857 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
858 |
+
downsample_padding: int = 1,
|
859 |
+
mid_block_scale_factor: float = 1,
|
860 |
+
act_fn: str = "silu",
|
861 |
+
norm_num_groups: Optional[int] = 32,
|
862 |
+
norm_eps: float = 1e-5,
|
863 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
864 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
865 |
+
encoder_hid_dim: Optional[int] = None,
|
866 |
+
encoder_hid_dim_type: Optional[str] = None,
|
867 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
868 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
869 |
+
dual_cross_attention: bool = False,
|
870 |
+
use_linear_projection: bool = False,
|
871 |
+
class_embed_type: Optional[str] = None,
|
872 |
+
addition_embed_type: Optional[str] = None,
|
873 |
+
addition_time_embed_dim: Optional[int] = None,
|
874 |
+
num_class_embeds: Optional[int] = None,
|
875 |
+
upcast_attention: bool = False,
|
876 |
+
resnet_time_scale_shift: str = "default",
|
877 |
+
resnet_skip_time_act: bool = False,
|
878 |
+
resnet_out_scale_factor: int = 1.0,
|
879 |
+
time_embedding_type: str = "positional",
|
880 |
+
time_embedding_dim: Optional[int] = None,
|
881 |
+
time_embedding_act_fn: Optional[str] = None,
|
882 |
+
timestep_post_act: Optional[str] = None,
|
883 |
+
time_cond_proj_dim: Optional[int] = None,
|
884 |
+
conv_in_kernel: int = 3,
|
885 |
+
conv_out_kernel: int = 3,
|
886 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
887 |
+
class_embeddings_concat: bool = False,
|
888 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
889 |
+
cross_attention_norm: Optional[str] = None,
|
890 |
+
addition_embed_type_num_heads=64,
|
891 |
+
|
892 |
+
# Added
|
893 |
+
clip_embedding_dim: int = 1024,
|
894 |
+
num_clip_in: int = 25,
|
895 |
+
dragging_embedding_dim: int = 256,
|
896 |
+
use_drag_tokens: bool = True,
|
897 |
+
single_drag_token: bool = False,
|
898 |
+
num_drags: int = 10,
|
899 |
+
|
900 |
+
class_dropout_prob: float = 0.1,
|
901 |
+
|
902 |
+
flow_original_res: bool = False,
|
903 |
+
flow_size: int = 512,
|
904 |
+
|
905 |
+
input_concat_dragging: bool = True,
|
906 |
+
attn_concat_dragging: bool = False,
|
907 |
+
flow_multi_resolution_conv: bool = False,
|
908 |
+
|
909 |
+
flow_in_old_version: bool = True,
|
910 |
+
):
|
911 |
+
super().__init__()
|
912 |
+
|
913 |
+
assert input_concat_dragging or attn_concat_dragging or flow_multi_resolution_conv
|
914 |
+
if flow_multi_resolution_conv:
|
915 |
+
assert not attn_concat_dragging and not input_concat_dragging
|
916 |
+
|
917 |
+
self.sample_size = sample_size
|
918 |
+
|
919 |
+
self.drag_dropout_prob = class_dropout_prob
|
920 |
+
|
921 |
+
if num_attention_heads is not None:
|
922 |
+
raise ValueError(
|
923 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
924 |
+
)
|
925 |
+
|
926 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
927 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
928 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
929 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
930 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
931 |
+
# which is why we correct for the naming here.
|
932 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
933 |
+
|
934 |
+
# Check inputs
|
935 |
+
if len(down_block_types) != len(up_block_types):
|
936 |
+
raise ValueError(
|
937 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
938 |
+
)
|
939 |
+
|
940 |
+
if len(block_out_channels) != len(down_block_types):
|
941 |
+
raise ValueError(
|
942 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
943 |
+
)
|
944 |
+
|
945 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
946 |
+
raise ValueError(
|
947 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
948 |
+
)
|
949 |
+
|
950 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
951 |
+
raise ValueError(
|
952 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
953 |
+
)
|
954 |
+
|
955 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
956 |
+
raise ValueError(
|
957 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
958 |
+
)
|
959 |
+
|
960 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
961 |
+
raise ValueError(
|
962 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
963 |
+
)
|
964 |
+
|
965 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
966 |
+
raise ValueError(
|
967 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
968 |
+
)
|
969 |
+
|
970 |
+
# input
|
971 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
972 |
+
|
973 |
+
self.num_drags = num_drags
|
974 |
+
|
975 |
+
self.attn_concat_dragging = attn_concat_dragging
|
976 |
+
if self.attn_concat_dragging:
|
977 |
+
self.drag_extra_dim = 4 * self.num_drags
|
978 |
+
|
979 |
+
self.flow_multi_resolution_conv = flow_multi_resolution_conv
|
980 |
+
if self.flow_multi_resolution_conv:
|
981 |
+
self.flow_adapter = Adapter(
|
982 |
+
channels=block_out_channels[:1] + block_out_channels[:-1],
|
983 |
+
nums_rb=2,
|
984 |
+
cin=3,
|
985 |
+
sk=True,
|
986 |
+
use_conv=False,
|
987 |
+
)
|
988 |
+
|
989 |
+
self.input_concat_dragging = input_concat_dragging
|
990 |
+
self.flow_in_old_version = flow_in_old_version
|
991 |
+
if self.input_concat_dragging:
|
992 |
+
if self.flow_in_old_version:
|
993 |
+
self.conv_in_flow = nn.Conv2d(
|
994 |
+
in_channels + flow_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
995 |
+
)
|
996 |
+
else:
|
997 |
+
self.conv_in = nn.Conv2d(
|
998 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
999 |
+
)
|
1000 |
+
self.conv_in_flow = nn.Conv2d(
|
1001 |
+
flow_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding, bias=False
|
1002 |
+
)
|
1003 |
+
else:
|
1004 |
+
self.conv_in = nn.Conv2d(
|
1005 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
self.flow_original_res = flow_original_res
|
1009 |
+
if flow_original_res and self.input_concat_dragging:
|
1010 |
+
self.num_flow_down_layers = 0
|
1011 |
+
cur_sample_size = sample_size
|
1012 |
+
while flow_size > cur_sample_size:
|
1013 |
+
assert flow_size % cur_sample_size == 0
|
1014 |
+
self.num_flow_down_layers += 1
|
1015 |
+
cur_sample_size *= 2
|
1016 |
+
|
1017 |
+
self.flow_preprocess = nn.ModuleList([])
|
1018 |
+
for _ in range(self.num_flow_down_layers):
|
1019 |
+
self.flow_preprocess.append(nn.Conv2d(
|
1020 |
+
flow_channels, flow_channels, kernel_size=3, padding=1
|
1021 |
+
))
|
1022 |
+
self.flow_proj_act = get_activation(act_fn)
|
1023 |
+
|
1024 |
+
self.num_clip_in = num_clip_in
|
1025 |
+
self.clip_proj = nn.ModuleList([])
|
1026 |
+
for i in range(num_clip_in):
|
1027 |
+
self.clip_proj.append(nn.Linear(clip_embedding_dim, clip_embedding_dim))
|
1028 |
+
self.clip_final = nn.Linear(clip_embedding_dim, cross_attention_dim)
|
1029 |
+
|
1030 |
+
self.use_drag_tokens = use_drag_tokens
|
1031 |
+
self.single_drag_token = single_drag_token
|
1032 |
+
if use_drag_tokens:
|
1033 |
+
self.dragging_embedding_dim = dragging_embedding_dim
|
1034 |
+
self.drag_proj = nn.Linear(dragging_embedding_dim * 4, dragging_embedding_dim * 4)
|
1035 |
+
self.drag_final = nn.Linear(dragging_embedding_dim * 4, cross_attention_dim)
|
1036 |
+
self.proj_act = get_activation(act_fn)
|
1037 |
+
|
1038 |
+
# time
|
1039 |
+
if time_embedding_type == "fourier":
|
1040 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
1041 |
+
if time_embed_dim % 2 != 0:
|
1042 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
1043 |
+
self.time_proj = GaussianFourierProjection(
|
1044 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
1045 |
+
)
|
1046 |
+
timestep_input_dim = time_embed_dim
|
1047 |
+
elif time_embedding_type == "positional":
|
1048 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
1049 |
+
|
1050 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
1051 |
+
timestep_input_dim = block_out_channels[0]
|
1052 |
+
else:
|
1053 |
+
raise ValueError(
|
1054 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
1055 |
+
)
|
1056 |
+
|
1057 |
+
self.time_embedding = TimestepEmbedding(
|
1058 |
+
timestep_input_dim,
|
1059 |
+
time_embed_dim,
|
1060 |
+
act_fn=act_fn,
|
1061 |
+
post_act_fn=timestep_post_act,
|
1062 |
+
cond_proj_dim=time_cond_proj_dim,
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
1066 |
+
encoder_hid_dim_type = "text_proj"
|
1067 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
1068 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
1069 |
+
|
1070 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
1071 |
+
raise ValueError(
|
1072 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
1073 |
+
)
|
1074 |
+
|
1075 |
+
if encoder_hid_dim_type == "text_proj":
|
1076 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
1077 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
1078 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
1079 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
1080 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
1081 |
+
self.encoder_hid_proj = TextImageProjection(
|
1082 |
+
text_embed_dim=encoder_hid_dim,
|
1083 |
+
image_embed_dim=cross_attention_dim,
|
1084 |
+
cross_attention_dim=cross_attention_dim,
|
1085 |
+
)
|
1086 |
+
elif encoder_hid_dim_type == "image_proj":
|
1087 |
+
# Kandinsky 2.2
|
1088 |
+
self.encoder_hid_proj = ImageProjection(
|
1089 |
+
image_embed_dim=encoder_hid_dim,
|
1090 |
+
cross_attention_dim=cross_attention_dim,
|
1091 |
+
)
|
1092 |
+
elif encoder_hid_dim_type is not None:
|
1093 |
+
raise ValueError(
|
1094 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
1095 |
+
)
|
1096 |
+
else:
|
1097 |
+
self.encoder_hid_proj = None
|
1098 |
+
|
1099 |
+
# class embedding
|
1100 |
+
if class_embed_type is None and num_class_embeds is not None:
|
1101 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
1102 |
+
elif class_embed_type == "timestep":
|
1103 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
1104 |
+
elif class_embed_type == "identity":
|
1105 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
1106 |
+
elif class_embed_type == "projection":
|
1107 |
+
if projection_class_embeddings_input_dim is None:
|
1108 |
+
raise ValueError(
|
1109 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
1110 |
+
)
|
1111 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
1112 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
1113 |
+
# 2. it projects from an arbitrary input dimension.
|
1114 |
+
#
|
1115 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
1116 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
1117 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
1118 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
1119 |
+
elif class_embed_type == "simple_projection":
|
1120 |
+
if projection_class_embeddings_input_dim is None:
|
1121 |
+
raise ValueError(
|
1122 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
1123 |
+
)
|
1124 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
1125 |
+
else:
|
1126 |
+
self.class_embedding = None
|
1127 |
+
|
1128 |
+
if addition_embed_type == "text":
|
1129 |
+
if encoder_hid_dim is not None:
|
1130 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
1131 |
+
else:
|
1132 |
+
text_time_embedding_from_dim = cross_attention_dim
|
1133 |
+
|
1134 |
+
self.add_embedding = TextTimeEmbedding(
|
1135 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
1136 |
+
)
|
1137 |
+
elif addition_embed_type == "text_image":
|
1138 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
1139 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
1140 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
1141 |
+
self.add_embedding = TextImageTimeEmbedding(
|
1142 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
1143 |
+
)
|
1144 |
+
elif addition_embed_type == "text_time":
|
1145 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
1146 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
1147 |
+
elif addition_embed_type == "image":
|
1148 |
+
# Kandinsky 2.2
|
1149 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
1150 |
+
elif addition_embed_type == "image_hint":
|
1151 |
+
# Kandinsky 2.2 ControlNet
|
1152 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
1153 |
+
elif addition_embed_type is not None:
|
1154 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
1155 |
+
|
1156 |
+
if time_embedding_act_fn is None:
|
1157 |
+
self.time_embed_act = None
|
1158 |
+
else:
|
1159 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
1160 |
+
|
1161 |
+
self.down_blocks = nn.ModuleList([])
|
1162 |
+
self.up_blocks = nn.ModuleList([])
|
1163 |
+
|
1164 |
+
if isinstance(only_cross_attention, bool):
|
1165 |
+
if mid_block_only_cross_attention is None:
|
1166 |
+
mid_block_only_cross_attention = only_cross_attention
|
1167 |
+
|
1168 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
1169 |
+
|
1170 |
+
if mid_block_only_cross_attention is None:
|
1171 |
+
mid_block_only_cross_attention = False
|
1172 |
+
|
1173 |
+
if isinstance(num_attention_heads, int):
|
1174 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
1175 |
+
|
1176 |
+
if isinstance(attention_head_dim, int):
|
1177 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
1178 |
+
|
1179 |
+
if isinstance(cross_attention_dim, int):
|
1180 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
1181 |
+
|
1182 |
+
if isinstance(layers_per_block, int):
|
1183 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
1184 |
+
|
1185 |
+
if isinstance(transformer_layers_per_block, int):
|
1186 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
1187 |
+
|
1188 |
+
if class_embeddings_concat:
|
1189 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
1190 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
1191 |
+
# regular time embeddings
|
1192 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
1193 |
+
else:
|
1194 |
+
blocks_time_embed_dim = time_embed_dim
|
1195 |
+
|
1196 |
+
# down
|
1197 |
+
output_channel = block_out_channels[0]
|
1198 |
+
for i, down_block_type in enumerate(down_block_types):
|
1199 |
+
input_channel = output_channel
|
1200 |
+
output_channel = block_out_channels[i]
|
1201 |
+
is_final_block = i == len(block_out_channels) - 1
|
1202 |
+
|
1203 |
+
down_block = get_down_block(
|
1204 |
+
self.attn_concat_dragging,
|
1205 |
+
down_block_type,
|
1206 |
+
num_layers=layers_per_block[i],
|
1207 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
1208 |
+
in_channels=input_channel,
|
1209 |
+
out_channels=output_channel,
|
1210 |
+
temb_channels=blocks_time_embed_dim,
|
1211 |
+
add_downsample=not is_final_block,
|
1212 |
+
resnet_eps=norm_eps,
|
1213 |
+
resnet_act_fn=act_fn,
|
1214 |
+
resnet_groups=norm_num_groups,
|
1215 |
+
cross_attention_dim=cross_attention_dim[i],
|
1216 |
+
num_attention_heads=num_attention_heads[i],
|
1217 |
+
downsample_padding=downsample_padding,
|
1218 |
+
dual_cross_attention=dual_cross_attention,
|
1219 |
+
use_linear_projection=use_linear_projection,
|
1220 |
+
only_cross_attention=only_cross_attention[i],
|
1221 |
+
upcast_attention=upcast_attention,
|
1222 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
1223 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
1224 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
1225 |
+
cross_attention_norm=cross_attention_norm,
|
1226 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
1227 |
+
flow_channels=self.drag_extra_dim if self.attn_concat_dragging else None,
|
1228 |
+
)
|
1229 |
+
self.down_blocks.append(down_block)
|
1230 |
+
|
1231 |
+
# mid
|
1232 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
1233 |
+
mid_block_kwargs = dict(
|
1234 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
1235 |
+
in_channels=block_out_channels[-1],
|
1236 |
+
temb_channels=blocks_time_embed_dim,
|
1237 |
+
resnet_eps=norm_eps,
|
1238 |
+
resnet_act_fn=act_fn,
|
1239 |
+
output_scale_factor=mid_block_scale_factor,
|
1240 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
1241 |
+
cross_attention_dim=cross_attention_dim[-1],
|
1242 |
+
num_attention_heads=num_attention_heads[-1],
|
1243 |
+
resnet_groups=norm_num_groups,
|
1244 |
+
dual_cross_attention=dual_cross_attention,
|
1245 |
+
use_linear_projection=use_linear_projection,
|
1246 |
+
upcast_attention=upcast_attention,
|
1247 |
+
)
|
1248 |
+
|
1249 |
+
if self.attn_concat_dragging:
|
1250 |
+
mid_block_kwargs["flow_channels"] = self.drag_extra_dim
|
1251 |
+
mid_block_type += "WithFlow"
|
1252 |
+
|
1253 |
+
self.mid_block = eval(mid_block_type)(
|
1254 |
+
**mid_block_kwargs
|
1255 |
+
)
|
1256 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
1257 |
+
raise NotImplementedError
|
1258 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
1259 |
+
in_channels=block_out_channels[-1],
|
1260 |
+
temb_channels=blocks_time_embed_dim,
|
1261 |
+
resnet_eps=norm_eps,
|
1262 |
+
resnet_act_fn=act_fn,
|
1263 |
+
output_scale_factor=mid_block_scale_factor,
|
1264 |
+
cross_attention_dim=cross_attention_dim[-1],
|
1265 |
+
attention_head_dim=attention_head_dim[-1],
|
1266 |
+
resnet_groups=norm_num_groups,
|
1267 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
1268 |
+
skip_time_act=resnet_skip_time_act,
|
1269 |
+
only_cross_attention=mid_block_only_cross_attention,
|
1270 |
+
cross_attention_norm=cross_attention_norm,
|
1271 |
+
)
|
1272 |
+
elif mid_block_type is None:
|
1273 |
+
self.mid_block = None
|
1274 |
+
else:
|
1275 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
1276 |
+
|
1277 |
+
# count how many layers upsample the images
|
1278 |
+
self.num_upsamplers = 0
|
1279 |
+
|
1280 |
+
# up
|
1281 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
1282 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
1283 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
1284 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
1285 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
1286 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
1287 |
+
|
1288 |
+
output_channel = reversed_block_out_channels[0]
|
1289 |
+
for i, up_block_type in enumerate(up_block_types):
|
1290 |
+
is_final_block = i == len(block_out_channels) - 1
|
1291 |
+
|
1292 |
+
prev_output_channel = output_channel
|
1293 |
+
output_channel = reversed_block_out_channels[i]
|
1294 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
1295 |
+
|
1296 |
+
# add upsample block for all BUT final layer
|
1297 |
+
if not is_final_block:
|
1298 |
+
add_upsample = True
|
1299 |
+
self.num_upsamplers += 1
|
1300 |
+
else:
|
1301 |
+
add_upsample = False
|
1302 |
+
|
1303 |
+
up_block = get_up_block(
|
1304 |
+
self.attn_concat_dragging,
|
1305 |
+
up_block_type,
|
1306 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
1307 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
1308 |
+
in_channels=input_channel,
|
1309 |
+
out_channels=output_channel,
|
1310 |
+
prev_output_channel=prev_output_channel,
|
1311 |
+
temb_channels=blocks_time_embed_dim,
|
1312 |
+
add_upsample=add_upsample,
|
1313 |
+
resnet_eps=norm_eps,
|
1314 |
+
resnet_act_fn=act_fn,
|
1315 |
+
resnet_groups=norm_num_groups,
|
1316 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
1317 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
1318 |
+
dual_cross_attention=dual_cross_attention,
|
1319 |
+
use_linear_projection=use_linear_projection,
|
1320 |
+
only_cross_attention=only_cross_attention[i],
|
1321 |
+
upcast_attention=upcast_attention,
|
1322 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
1323 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
1324 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
1325 |
+
cross_attention_norm=cross_attention_norm,
|
1326 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
1327 |
+
flow_channels=self.drag_extra_dim if self.attn_concat_dragging else None,
|
1328 |
+
)
|
1329 |
+
self.up_blocks.append(up_block)
|
1330 |
+
prev_output_channel = output_channel
|
1331 |
+
|
1332 |
+
# out
|
1333 |
+
if norm_num_groups is not None:
|
1334 |
+
self.conv_norm_out = nn.GroupNorm(
|
1335 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
1336 |
+
)
|
1337 |
+
|
1338 |
+
self.conv_act = get_activation(act_fn)
|
1339 |
+
|
1340 |
+
else:
|
1341 |
+
self.conv_norm_out = None
|
1342 |
+
self.conv_act = None
|
1343 |
+
|
1344 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
1345 |
+
self.conv_out = nn.Conv2d(
|
1346 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
@property
|
1350 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
1351 |
+
r"""
|
1352 |
+
Returns:
|
1353 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
1354 |
+
indexed by its weight name.
|
1355 |
+
"""
|
1356 |
+
# set recursively
|
1357 |
+
processors = {}
|
1358 |
+
|
1359 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
1360 |
+
if hasattr(module, "set_processor"):
|
1361 |
+
processors[f"{name}.processor"] = module.processor
|
1362 |
+
|
1363 |
+
for sub_name, child in module.named_children():
|
1364 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
1365 |
+
|
1366 |
+
return processors
|
1367 |
+
|
1368 |
+
for name, module in self.named_children():
|
1369 |
+
fn_recursive_add_processors(name, module, processors)
|
1370 |
+
|
1371 |
+
return processors
|
1372 |
+
|
1373 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
1374 |
+
r"""
|
1375 |
+
Sets the attention processor to use to compute attention.
|
1376 |
+
|
1377 |
+
Parameters:
|
1378 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
1379 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
1380 |
+
for **all** `Attention` layers.
|
1381 |
+
|
1382 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
1383 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
1384 |
+
|
1385 |
+
"""
|
1386 |
+
count = len(self.attn_processors.keys())
|
1387 |
+
|
1388 |
+
if isinstance(processor, dict) and len(processor) != count:
|
1389 |
+
raise ValueError(
|
1390 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
1391 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
1392 |
+
)
|
1393 |
+
|
1394 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
1395 |
+
if hasattr(module, "set_processor"):
|
1396 |
+
if not isinstance(processor, dict):
|
1397 |
+
module.set_processor(processor)
|
1398 |
+
else:
|
1399 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
1400 |
+
|
1401 |
+
for sub_name, child in module.named_children():
|
1402 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
1403 |
+
|
1404 |
+
for name, module in self.named_children():
|
1405 |
+
fn_recursive_attn_processor(name, module, processor)
|
1406 |
+
|
1407 |
+
def set_default_attn_processor(self):
|
1408 |
+
"""
|
1409 |
+
Disables custom attention processors and sets the default attention implementation.
|
1410 |
+
"""
|
1411 |
+
self.set_attn_processor(AttnProcessor())
|
1412 |
+
|
1413 |
+
def set_attention_slice(self, slice_size):
|
1414 |
+
r"""
|
1415 |
+
Enable sliced attention computation.
|
1416 |
+
|
1417 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
1418 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
1419 |
+
|
1420 |
+
Args:
|
1421 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
1422 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
1423 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
1424 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
1425 |
+
must be a multiple of `slice_size`.
|
1426 |
+
"""
|
1427 |
+
sliceable_head_dims = []
|
1428 |
+
|
1429 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
1430 |
+
if hasattr(module, "set_attention_slice"):
|
1431 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
1432 |
+
|
1433 |
+
for child in module.children():
|
1434 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
1435 |
+
|
1436 |
+
# retrieve number of attention layers
|
1437 |
+
for module in self.children():
|
1438 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
1439 |
+
|
1440 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
1441 |
+
|
1442 |
+
if slice_size == "auto":
|
1443 |
+
# half the attention head size is usually a good trade-off between
|
1444 |
+
# speed and memory
|
1445 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
1446 |
+
elif slice_size == "max":
|
1447 |
+
# make smallest slice possible
|
1448 |
+
slice_size = num_sliceable_layers * [1]
|
1449 |
+
|
1450 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
1451 |
+
|
1452 |
+
if len(slice_size) != len(sliceable_head_dims):
|
1453 |
+
raise ValueError(
|
1454 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
1455 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
1456 |
+
)
|
1457 |
+
|
1458 |
+
for i in range(len(slice_size)):
|
1459 |
+
size = slice_size[i]
|
1460 |
+
dim = sliceable_head_dims[i]
|
1461 |
+
if size is not None and size > dim:
|
1462 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
1463 |
+
|
1464 |
+
# Recursively walk through all the children.
|
1465 |
+
# Any children which exposes the set_attention_slice method
|
1466 |
+
# gets the message
|
1467 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
1468 |
+
if hasattr(module, "set_attention_slice"):
|
1469 |
+
module.set_attention_slice(slice_size.pop())
|
1470 |
+
|
1471 |
+
for child in module.children():
|
1472 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
1473 |
+
|
1474 |
+
reversed_slice_size = list(reversed(slice_size))
|
1475 |
+
for module in self.children():
|
1476 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
1477 |
+
|
1478 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1479 |
+
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)):
|
1480 |
+
module.gradient_checkpointing = value
|
1481 |
+
|
1482 |
+
def _convert_drag_to_concatting_image(self, drag: torch.Tensor, current_resolution: int) -> torch.Tensor:
|
1483 |
+
assert self.drag_extra_dim == 4 * self.num_drags
|
1484 |
+
|
1485 |
+
bsz = drag.shape[0]
|
1486 |
+
concatting_image = -torch.ones(bsz, self.drag_extra_dim, current_resolution, current_resolution)
|
1487 |
+
concatting_image = concatting_image.to(drag.device)
|
1488 |
+
|
1489 |
+
not_all_zeros = drag.any(dim=-1).repeat_interleave(4, dim=1).unsqueeze(-1).unsqueeze(-1)
|
1490 |
+
|
1491 |
+
y_grid, x_grid = torch.meshgrid(torch.arange(current_resolution), torch.arange(current_resolution), indexing="ij")
|
1492 |
+
y_grid = y_grid.to(drag.device).unsqueeze(0).unsqueeze(0) # (1, 1, res, res)
|
1493 |
+
x_grid = x_grid.to(drag.device).unsqueeze(0).unsqueeze(0)
|
1494 |
+
|
1495 |
+
x0 = (drag[..., 0] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
|
1496 |
+
x_src = (drag[..., 0] * current_resolution - x0).unsqueeze(-1).unsqueeze(-1) # (bsz, num_drags, 1, 1)
|
1497 |
+
x0 = x0.unsqueeze(-1).unsqueeze(-1)
|
1498 |
+
x0 = torch.stack([x0, x0, torch.zeros_like(x0) - 1, torch.zeros_like(x0) - 1], dim=2).view(bsz, 4 * self.num_drags, 1, 1)
|
1499 |
+
|
1500 |
+
y0 = (drag[..., 1] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
|
1501 |
+
y_src = (drag[..., 1] * current_resolution - y0).unsqueeze(-1).unsqueeze(-1)
|
1502 |
+
y0 = y0.unsqueeze(-1).unsqueeze(-1)
|
1503 |
+
y0 = torch.stack([y0, y0, torch.zeros_like(y0) - 1, torch.zeros_like(y0) - 1], dim=2).view(bsz, 4 * self.num_drags, 1, 1)
|
1504 |
+
|
1505 |
+
x1 = (drag[..., 2] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
|
1506 |
+
x_tgt = (drag[..., 2] * current_resolution - x1).unsqueeze(-1).unsqueeze(-1)
|
1507 |
+
x1 = x1.unsqueeze(-1).unsqueeze(-1)
|
1508 |
+
x1 = torch.stack([torch.zeros_like(x1) - 1, torch.zeros_like(x1) - 1, x1, x1], dim=2).view(bsz, 4 * self.num_drags, 1, 1)
|
1509 |
+
|
1510 |
+
y1 = (drag[..., 3] * current_resolution - 0.5).round().clip(0, current_resolution - 1)
|
1511 |
+
y_tgt = (drag[..., 3] * current_resolution - y1).unsqueeze(-1).unsqueeze(-1)
|
1512 |
+
y1 = y1.unsqueeze(-1).unsqueeze(-1)
|
1513 |
+
y1 = torch.stack([torch.zeros_like(y1) - 1, torch.zeros_like(y1) - 1, y1, y1], dim=2).view(bsz, 4 * self.num_drags, 1, 1)
|
1514 |
+
|
1515 |
+
# assert torch.all(x_src >= 0) and torch.all(x_src <= 1)
|
1516 |
+
# assert torch.all(y_src >= 0) and torch.all(y_src <= 1)
|
1517 |
+
# assert torch.all(x_tgt >= 0) and torch.all(x_tgt <= 1)
|
1518 |
+
# assert torch.all(y_tgt >= 0) and torch.all(y_tgt <= 1)
|
1519 |
+
|
1520 |
+
value_image = torch.stack([x_src, y_src, x_tgt, y_tgt], dim=2).view(bsz, 4 * self.num_drags, 1, 1)
|
1521 |
+
value_image = value_image.expand(bsz, 4 * self.num_drags, current_resolution, current_resolution)
|
1522 |
+
|
1523 |
+
concatting_image[(x_grid == x0) & (y_grid == y0) & not_all_zeros] = value_image[(x_grid == x0) & (y_grid == y0) & not_all_zeros]
|
1524 |
+
concatting_image[(x_grid == x1) & (y_grid == y1) & not_all_zeros] = value_image[(x_grid == x1) & (y_grid == y1) & not_all_zeros]
|
1525 |
+
|
1526 |
+
return concatting_image
|
1527 |
+
|
1528 |
+
def forward(
|
1529 |
+
self,
|
1530 |
+
# sample: torch.FloatTensor,
|
1531 |
+
# timestep: Union[torch.Tensor, float, int],
|
1532 |
+
# encoder_hidden_states: torch.Tensor,
|
1533 |
+
# class_labels: Optional[torch.Tensor] = None,
|
1534 |
+
# timestep_cond: Optional[torch.Tensor] = None,
|
1535 |
+
# attention_mask: Optional[torch.Tensor] = None,
|
1536 |
+
# cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1537 |
+
# added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1538 |
+
# down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1539 |
+
# mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1540 |
+
# encoder_attention_mask: Optional[torch.Tensor] = None,
|
1541 |
+
# return_dict: bool = True,
|
1542 |
+
x: torch.FloatTensor,
|
1543 |
+
t: torch.Tensor,
|
1544 |
+
x_cond: torch.FloatTensor,
|
1545 |
+
x_cond_extra: Optional[torch.Tensor] = None,
|
1546 |
+
force_drop_ids: Optional[torch.Tensor] = None,
|
1547 |
+
hidden_cls: Optional[torch.Tensor] = None,
|
1548 |
+
drags: Optional[torch.Tensor] = None,
|
1549 |
+
save_features: bool = False,
|
1550 |
+
) -> torch.Tensor:
|
1551 |
+
r"""
|
1552 |
+
The [`UNet2DConditionModel`] forward method.
|
1553 |
+
|
1554 |
+
Args:
|
1555 |
+
sample (`torch.FloatTensor`):
|
1556 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1557 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1558 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
1559 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1560 |
+
encoder_attention_mask (`torch.Tensor`):
|
1561 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1562 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1563 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1564 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1565 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1566 |
+
tuple.
|
1567 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1568 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
1569 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1570 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
1571 |
+
are passed along to the UNet blocks.
|
1572 |
+
|
1573 |
+
Returns:
|
1574 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1575 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
1576 |
+
a `tuple` is returned where the first element is the sample tensor.
|
1577 |
+
"""
|
1578 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1579 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1580 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1581 |
+
# on the fly if necessary.
|
1582 |
+
default_overall_up_factor = 2 ** self.num_upsamplers
|
1583 |
+
|
1584 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1585 |
+
forward_upsample_size = False
|
1586 |
+
upsample_size = None
|
1587 |
+
|
1588 |
+
if any(s % default_overall_up_factor != 0 for s in x.shape[-2:]):
|
1589 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
1590 |
+
forward_upsample_size = True
|
1591 |
+
|
1592 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1593 |
+
# expects mask of shape:
|
1594 |
+
# [batch, key_tokens]
|
1595 |
+
# adds singleton query_tokens dimension:
|
1596 |
+
# [batch, 1, key_tokens]
|
1597 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1598 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1599 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1600 |
+
# if attention_mask is not None:
|
1601 |
+
# assume that mask is expressed as:
|
1602 |
+
# (1 = keep, 0 = discard)
|
1603 |
+
# convert mask into a bias that can be added to attention scores:
|
1604 |
+
# (keep = +0, discard = -10000.0)
|
1605 |
+
# attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1606 |
+
# attention_mask = attention_mask.unsqueeze(1)
|
1607 |
+
|
1608 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1609 |
+
# if encoder_attention_mask is not None:
|
1610 |
+
# encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1611 |
+
# encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1612 |
+
if self.flow_original_res and self.input_concat_dragging:
|
1613 |
+
for i in range(self.num_flow_down_layers):
|
1614 |
+
x_cond_extra = self.flow_preprocess[i](x_cond_extra)
|
1615 |
+
x_cond_extra = self.flow_proj_act(x_cond_extra)
|
1616 |
+
x_cond_extra = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(x_cond_extra)
|
1617 |
+
if self.input_concat_dragging:
|
1618 |
+
assert x_cond_extra.shape[-1] == x.shape[-1], f"{x_cond_extra.shape} != {x.shape}"
|
1619 |
+
|
1620 |
+
bsz, num_drags, drag_dim = drags.shape
|
1621 |
+
assert num_drags == self.num_drags
|
1622 |
+
if (self.train and self.drag_dropout_prob > 0) or force_drop_ids is not None:
|
1623 |
+
if force_drop_ids is None:
|
1624 |
+
drop_ids = torch.rand(bsz, device=x_cond_extra.device) < self.drag_dropout_prob
|
1625 |
+
else:
|
1626 |
+
drop_ids = force_drop_ids == 1
|
1627 |
+
x_cond_extra = torch.where(
|
1628 |
+
drop_ids[:, None, None, None].expand_as(x_cond_extra),
|
1629 |
+
torch.zeros_like(x_cond_extra),
|
1630 |
+
x_cond_extra,
|
1631 |
+
)
|
1632 |
+
drags = torch.where(
|
1633 |
+
drop_ids[:, None, None].expand_as(drags),
|
1634 |
+
torch.zeros_like(drags),
|
1635 |
+
drags,
|
1636 |
+
)
|
1637 |
+
|
1638 |
+
if not self.input_concat_dragging:
|
1639 |
+
sample = torch.cat([x_cond, x], dim=0)
|
1640 |
+
else:
|
1641 |
+
sample_noised = torch.cat([x, x_cond_extra], dim=1)
|
1642 |
+
sample_input = torch.cat([x_cond, torch.zeros_like(x_cond_extra)], dim=1)
|
1643 |
+
sample = torch.cat([sample_input, sample_noised], dim=0)
|
1644 |
+
|
1645 |
+
drags = torch.cat([torch.zeros_like(drags), drags], dim=0)
|
1646 |
+
|
1647 |
+
if self.flow_multi_resolution_conv:
|
1648 |
+
x_cond_extra = torch.cat([torch.zeros_like(x_cond_extra), x_cond_extra], dim=0)
|
1649 |
+
flow_multi_resolution_features = self.flow_adapter(x_cond_extra)
|
1650 |
+
|
1651 |
+
# -1. (new) get encoder_hidden_states
|
1652 |
+
if self.use_drag_tokens:
|
1653 |
+
assert drag_dim == 4
|
1654 |
+
drags = drags.reshape(-1, 4)
|
1655 |
+
drags = get_sin_cos_pos_embed(embed_dim=self.dragging_embedding_dim, x=drags)
|
1656 |
+
drags = drags.reshape(-1, num_drags, self.dragging_embedding_dim * 4)
|
1657 |
+
drag_states = self.drag_proj(drags)
|
1658 |
+
drag_states = self.proj_act(drag_states)
|
1659 |
+
drag_states = self.drag_final(drag_states)
|
1660 |
+
|
1661 |
+
assert hidden_cls.shape[1] >= self.num_clip_in
|
1662 |
+
cls_proj = 0
|
1663 |
+
for i in range(self.num_clip_in):
|
1664 |
+
current_cls = hidden_cls[:, -(i+1), :]
|
1665 |
+
cls_proj += self.clip_proj[i](current_cls)
|
1666 |
+
cls_proj = cls_proj / self.num_clip_in
|
1667 |
+
cls_proj = self.proj_act(cls_proj)
|
1668 |
+
cls_proj = self.clip_final(cls_proj)
|
1669 |
+
|
1670 |
+
if self.use_drag_tokens:
|
1671 |
+
if not self.single_drag_token:
|
1672 |
+
encoder_hidden_states = torch.cat([drag_states, torch.concat([cls_proj[:, None, :], cls_proj[:, None, :]], dim=0)], dim=1)
|
1673 |
+
assert encoder_hidden_states.shape[1] == num_drags + 1
|
1674 |
+
else:
|
1675 |
+
encoder_hidden_states = torch.cat([torch.mean(drag_states, dim=1, keepdim=True), torch.concat([cls_proj[:, None, :], cls_proj[:, None, :]], dim=0)], dim=1)
|
1676 |
+
assert encoder_hidden_states.shape[1] == 2
|
1677 |
+
else:
|
1678 |
+
encoder_hidden_states = cls_proj[:, None, :]
|
1679 |
+
assert encoder_hidden_states.shape[1] == 1
|
1680 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states], dim=0)
|
1681 |
+
|
1682 |
+
# 0. center input if necessary
|
1683 |
+
assert not self.config.center_input_sample, "center_input_sample is not supported yet."
|
1684 |
+
if self.config.center_input_sample:
|
1685 |
+
sample = 2 * sample - 1.0
|
1686 |
+
|
1687 |
+
# 1. time
|
1688 |
+
timesteps = t
|
1689 |
+
if len(timesteps.shape) == 0:
|
1690 |
+
timesteps = timesteps[None].to(sample.device)
|
1691 |
+
|
1692 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1693 |
+
timesteps = torch.cat([timesteps, timesteps], dim=0)
|
1694 |
+
|
1695 |
+
t_emb = self.time_proj(timesteps)
|
1696 |
+
|
1697 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1698 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1699 |
+
# there might be better ways to encapsulate this.
|
1700 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1701 |
+
|
1702 |
+
emb = self.time_embedding(t_emb, None)
|
1703 |
+
aug_emb = None
|
1704 |
+
|
1705 |
+
if self.class_embedding is not None:
|
1706 |
+
if class_labels is None:
|
1707 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1708 |
+
|
1709 |
+
if self.config.class_embed_type == "timestep":
|
1710 |
+
class_labels = self.time_proj(class_labels)
|
1711 |
+
|
1712 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1713 |
+
# there might be better ways to encapsulate this.
|
1714 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1715 |
+
|
1716 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1717 |
+
|
1718 |
+
if self.config.class_embeddings_concat:
|
1719 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1720 |
+
else:
|
1721 |
+
emb = emb + class_emb
|
1722 |
+
|
1723 |
+
if self.config.addition_embed_type == "text":
|
1724 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1725 |
+
elif self.config.addition_embed_type == "text_image":
|
1726 |
+
# Kandinsky 2.1 - style
|
1727 |
+
if "image_embeds" not in added_cond_kwargs:
|
1728 |
+
raise ValueError(
|
1729 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1730 |
+
)
|
1731 |
+
|
1732 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1733 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1734 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1735 |
+
elif self.config.addition_embed_type == "text_time":
|
1736 |
+
# SDXL - style
|
1737 |
+
if "text_embeds" not in added_cond_kwargs:
|
1738 |
+
raise ValueError(
|
1739 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1740 |
+
)
|
1741 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1742 |
+
if "time_ids" not in added_cond_kwargs:
|
1743 |
+
raise ValueError(
|
1744 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1745 |
+
)
|
1746 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1747 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1748 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1749 |
+
|
1750 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1751 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1752 |
+
aug_emb = self.add_embedding(add_embeds)
|
1753 |
+
elif self.config.addition_embed_type == "image":
|
1754 |
+
# Kandinsky 2.2 - style
|
1755 |
+
if "image_embeds" not in added_cond_kwargs:
|
1756 |
+
raise ValueError(
|
1757 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1758 |
+
)
|
1759 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1760 |
+
aug_emb = self.add_embedding(image_embs)
|
1761 |
+
elif self.config.addition_embed_type == "image_hint":
|
1762 |
+
# Kandinsky 2.2 - style
|
1763 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1764 |
+
raise ValueError(
|
1765 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1766 |
+
)
|
1767 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1768 |
+
hint = added_cond_kwargs.get("hint")
|
1769 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1770 |
+
sample = torch.cat([sample, hint], dim=1)
|
1771 |
+
|
1772 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1773 |
+
|
1774 |
+
if self.time_embed_act is not None:
|
1775 |
+
emb = self.time_embed_act(emb)
|
1776 |
+
|
1777 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1778 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1779 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1780 |
+
# Kadinsky 2.1 - style
|
1781 |
+
if "image_embeds" not in added_cond_kwargs:
|
1782 |
+
raise ValueError(
|
1783 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1784 |
+
)
|
1785 |
+
|
1786 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1787 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1788 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1789 |
+
# Kandinsky 2.2 - style
|
1790 |
+
if "image_embeds" not in added_cond_kwargs:
|
1791 |
+
raise ValueError(
|
1792 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1793 |
+
)
|
1794 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1795 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1796 |
+
# 2. pre-process
|
1797 |
+
if self.input_concat_dragging:
|
1798 |
+
if self.flow_in_old_version:
|
1799 |
+
sample = self.conv_in_flow(sample)
|
1800 |
+
else:
|
1801 |
+
sample_x, sample_flow = torch.split(sample, 4, dim=1)
|
1802 |
+
sample_x = self.conv_in(sample_x)
|
1803 |
+
sample_flow = self.conv_in_flow(sample_flow)
|
1804 |
+
sample = sample_x + sample_flow
|
1805 |
+
else:
|
1806 |
+
sample = self.conv_in(sample)
|
1807 |
+
|
1808 |
+
# 3. down
|
1809 |
+
down_block_res_samples = (sample,)
|
1810 |
+
for idx, downsample_block in enumerate(self.down_blocks):
|
1811 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1812 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1813 |
+
additional_residuals = {}
|
1814 |
+
|
1815 |
+
down_forward_kwargs = dict(
|
1816 |
+
hidden_states=sample if not self.flow_multi_resolution_conv else (sample + flow_multi_resolution_features[idx]),
|
1817 |
+
temb=emb,
|
1818 |
+
encoder_hidden_states=encoder_hidden_states,
|
1819 |
+
attention_mask=None,
|
1820 |
+
cross_attention_kwargs=None,
|
1821 |
+
encoder_attention_mask=None,
|
1822 |
+
**additional_residuals,
|
1823 |
+
)
|
1824 |
+
|
1825 |
+
if self.attn_concat_dragging:
|
1826 |
+
down_forward_kwargs["flow"] = self._convert_drag_to_concatting_image(drags, sample.shape[-1])
|
1827 |
+
|
1828 |
+
sample, res_samples = downsample_block(
|
1829 |
+
**down_forward_kwargs
|
1830 |
+
)
|
1831 |
+
else:
|
1832 |
+
sample, res_samples = downsample_block(
|
1833 |
+
hidden_states=sample if not self.flow_multi_resolution_conv else (sample + flow_multi_resolution_features[idx]),
|
1834 |
+
temb=emb
|
1835 |
+
)
|
1836 |
+
|
1837 |
+
down_block_res_samples += res_samples
|
1838 |
+
|
1839 |
+
# 4. mid
|
1840 |
+
if self.mid_block is not None:
|
1841 |
+
if self.attn_concat_dragging:
|
1842 |
+
sample = self.mid_block(
|
1843 |
+
sample,
|
1844 |
+
emb,
|
1845 |
+
encoder_hidden_states=encoder_hidden_states,
|
1846 |
+
attention_mask=None,
|
1847 |
+
cross_attention_kwargs=None,
|
1848 |
+
encoder_attention_mask=None,
|
1849 |
+
flow=self._convert_drag_to_concatting_image(drags, sample.shape[-1]),
|
1850 |
+
)
|
1851 |
+
else:
|
1852 |
+
sample = self.mid_block(
|
1853 |
+
sample,
|
1854 |
+
emb,
|
1855 |
+
encoder_hidden_states=encoder_hidden_states,
|
1856 |
+
attention_mask=None,
|
1857 |
+
cross_attention_kwargs=None,
|
1858 |
+
encoder_attention_mask=None,
|
1859 |
+
)
|
1860 |
+
|
1861 |
+
# 5. up
|
1862 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1863 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1864 |
+
|
1865 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1866 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1867 |
+
|
1868 |
+
# if we have not reached the final block and need to forward the
|
1869 |
+
# upsample size, we do it here
|
1870 |
+
if not is_final_block and forward_upsample_size:
|
1871 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1872 |
+
|
1873 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1874 |
+
up_block_forward_kwargs = dict(
|
1875 |
+
hidden_states=sample,
|
1876 |
+
temb=emb,
|
1877 |
+
res_hidden_states_tuple=res_samples,
|
1878 |
+
encoder_hidden_states=encoder_hidden_states,
|
1879 |
+
attention_mask=None,
|
1880 |
+
cross_attention_kwargs=None,
|
1881 |
+
encoder_attention_mask=None,
|
1882 |
+
)
|
1883 |
+
|
1884 |
+
if self.attn_concat_dragging:
|
1885 |
+
up_block_forward_kwargs["flow"] = self._convert_drag_to_concatting_image(drags, sample.shape[-1])
|
1886 |
+
|
1887 |
+
sample = upsample_block(
|
1888 |
+
**up_block_forward_kwargs
|
1889 |
+
)
|
1890 |
+
else:
|
1891 |
+
sample = upsample_block(
|
1892 |
+
hidden_states=sample,
|
1893 |
+
temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1894 |
+
)
|
1895 |
+
|
1896 |
+
# 6. post-process
|
1897 |
+
if self.conv_norm_out:
|
1898 |
+
sample = self.conv_norm_out(sample)
|
1899 |
+
sample = self.conv_act(sample)
|
1900 |
+
sample = self.conv_out(sample)
|
1901 |
+
|
1902 |
+
return sample[bsz:]
|
1903 |
+
|
1904 |
+
def forward_with_cfg(
|
1905 |
+
self,
|
1906 |
+
x: torch.FloatTensor,
|
1907 |
+
t: torch.Tensor,
|
1908 |
+
x_cond: torch.FloatTensor,
|
1909 |
+
x_cond_extra: Optional[torch.Tensor] = None,
|
1910 |
+
hidden_cls: Optional[torch.Tensor] = None,
|
1911 |
+
drags: Optional[torch.Tensor] = None,
|
1912 |
+
cfg_scale: float = 1,
|
1913 |
+
) -> torch.Tensor:
|
1914 |
+
half = x[: len(x) // 2]
|
1915 |
+
combined = torch.cat([half, half], dim=0)
|
1916 |
+
force_drop_ids = torch.arange(len(combined), device=combined.device) < len(half)
|
1917 |
+
model_out = self.forward(combined, t, x_cond, x_cond_extra, force_drop_ids=force_drop_ids, hidden_cls=hidden_cls, drags=drags)
|
1918 |
+
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
1919 |
+
# three channels by default. The standard approach to cfg applies it to all channels.
|
1920 |
+
# This can be done by uncommenting the following line and commenting-out the line following that.
|
1921 |
+
# eps, rest = model_out[:, :3], model_out[:, 3:]
|
1922 |
+
eps, rest = model_out[:, :4], model_out[:, 4:]
|
1923 |
+
uncond_eps, cond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
1924 |
+
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
1925 |
+
eps = torch.cat([half_eps, half_eps], dim=0)
|
1926 |
+
return torch.cat([eps, rest], dim=1)
|
1927 |
+
|
1928 |
+
@classmethod
|
1929 |
+
def from_pretrained_sd(cls, pretrained_model_path, subfolder="unet", unet_additional_kwargs=None, load=True):
|
1930 |
+
if subfolder is not None:
|
1931 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
1932 |
+
print(f"loading unet's pretrained weights from {pretrained_model_path} ...")
|
1933 |
+
|
1934 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
1935 |
+
if not os.path.isfile(config_file):
|
1936 |
+
raise RuntimeError(f"{config_file} does not exist")
|
1937 |
+
with open(config_file, "r") as f:
|
1938 |
+
config = json.load(f)
|
1939 |
+
config["_class_name"] = cls.__name__
|
1940 |
+
|
1941 |
+
from diffusers.utils import WEIGHTS_NAME
|
1942 |
+
one_sided_attn = unet_additional_kwargs.pop("one_sided_attn", True) if unet_additional_kwargs is not None else True
|
1943 |
+
model = cls.from_config(config, **unet_additional_kwargs) if unet_additional_kwargs is not None else cls.from_config(config)
|
1944 |
+
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
1945 |
+
if not os.path.isfile(model_file):
|
1946 |
+
raise RuntimeError(f"{model_file} does not exist")
|
1947 |
+
|
1948 |
+
if load:
|
1949 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
1950 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
1951 |
+
|
1952 |
+
# Set the attention processor to always take k, v from the input (upper) branch
|
1953 |
+
if one_sided_attn:
|
1954 |
+
attn_processors_dict={
|
1955 |
+
"down_blocks.0.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1956 |
+
"down_blocks.0.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1957 |
+
"down_blocks.0.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1958 |
+
"down_blocks.0.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1959 |
+
"down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1960 |
+
"down_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1961 |
+
"down_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1962 |
+
"down_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1963 |
+
"down_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1964 |
+
"down_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1965 |
+
"down_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1966 |
+
"down_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1967 |
+
|
1968 |
+
"up_blocks.1.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1969 |
+
"up_blocks.1.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1970 |
+
"up_blocks.1.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1971 |
+
"up_blocks.1.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1972 |
+
"up_blocks.1.attentions.2.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1973 |
+
"up_blocks.1.attentions.2.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1974 |
+
"up_blocks.2.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1975 |
+
"up_blocks.2.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1976 |
+
"up_blocks.2.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1977 |
+
"up_blocks.2.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1978 |
+
"up_blocks.2.attentions.2.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1979 |
+
"up_blocks.2.attentions.2.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1980 |
+
"up_blocks.3.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1981 |
+
"up_blocks.3.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1982 |
+
"up_blocks.3.attentions.1.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1983 |
+
"up_blocks.3.attentions.1.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1984 |
+
"up_blocks.3.attentions.2.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1985 |
+
"up_blocks.3.attentions.2.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1986 |
+
|
1987 |
+
"mid_block.attentions.0.transformer_blocks.0.attn1.processor": OneSidedAttnProcessor(),
|
1988 |
+
"mid_block.attentions.0.transformer_blocks.0.attn2.processor": AttnProcessor(),
|
1989 |
+
}
|
1990 |
+
model.set_attn_processor(attn_processors_dict)
|
1991 |
+
|
1992 |
+
return model
|
requirements.txt
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==2.0.0
|
2 |
+
accelerate==0.24.1
|
3 |
+
addict==2.4.0
|
4 |
+
aiofiles==23.2.1
|
5 |
+
aiohttp==3.9.1
|
6 |
+
aiosignal==1.3.1
|
7 |
+
altair==5.2.0
|
8 |
+
annotated-types==0.6.0
|
9 |
+
antlr4-python3-runtime==4.9.3
|
10 |
+
anyio==3.7.1
|
11 |
+
appdirs==1.4.4
|
12 |
+
asttokens==2.4.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.1.0
|
15 |
+
backcall==0.2.0
|
16 |
+
backports.functools-lru-cache @ file:///home/conda/feedstock_root/build_artifacts/backports.functools_lru_cache_1687772187254/work
|
17 |
+
basicsr==1.4.2
|
18 |
+
blessed @ file:///home/conda/feedstock_root/build_artifacts/blessed_1666523113356/work
|
19 |
+
Brotli @ file:///tmp/abs_ecyw11_7ze/croots/recipe/brotli-split_1659616059936/work
|
20 |
+
cachetools==5.3.2
|
21 |
+
certifi @ file:///croot/certifi_1700501669400/work/certifi
|
22 |
+
cffi @ file:///croot/cffi_1670423208954/work
|
23 |
+
charset-normalizer @ file:///tmp/build/80754af9/charset-normalizer_1630003229654/work
|
24 |
+
clean-fid==0.1.35
|
25 |
+
click==8.1.7
|
26 |
+
clip-anytorch==2.6.0
|
27 |
+
cloudpickle==3.0.0
|
28 |
+
colorama @ file:///home/conda/feedstock_root/build_artifacts/colorama_1666700638685/work
|
29 |
+
coloredlogs==15.0.1
|
30 |
+
colorlog==6.8.2
|
31 |
+
ConfigArgParse==1.7
|
32 |
+
contourpy==1.1.1
|
33 |
+
controlnet-aux==0.0.7
|
34 |
+
cryptography @ file:///croot/cryptography_1694444244250/work
|
35 |
+
cycler==0.12.1
|
36 |
+
cypari==2.5.4
|
37 |
+
dctorch==0.1.2
|
38 |
+
decorator==4.4.2
|
39 |
+
diffusers==0.19.3
|
40 |
+
docker-pycreds==0.4.0
|
41 |
+
dotmap==1.3.30
|
42 |
+
einops==0.7.0
|
43 |
+
envlight @ git+https://github.com/ashawkey/envlight@ef492c03711c87287549a0283ee51199f45cbea4
|
44 |
+
exceptiongroup==1.2.0
|
45 |
+
executing==2.0.1
|
46 |
+
faiss==1.7.4
|
47 |
+
fastapi==0.105.0
|
48 |
+
fastcore==1.5.29
|
49 |
+
ffmpy==0.3.1
|
50 |
+
filelock @ file:///croot/filelock_1672387128942/work
|
51 |
+
flatbuffers==23.5.26
|
52 |
+
fonttools==4.45.1
|
53 |
+
frozenlist==1.4.0
|
54 |
+
fsspec==2023.10.0
|
55 |
+
ftfy==6.1.3
|
56 |
+
future==1.0.0
|
57 |
+
fvcore==0.1.5.post20210915
|
58 |
+
FXrays==1.3.5
|
59 |
+
gitdb==4.0.11
|
60 |
+
GitPython==3.1.40
|
61 |
+
gmpy2 @ file:///tmp/build/80754af9/gmpy2_1645455532332/work
|
62 |
+
google-auth==2.24.0
|
63 |
+
google-auth-oauthlib==1.0.0
|
64 |
+
gpustat @ file:///home/conda/feedstock_root/build_artifacts/gpustat_1692786716371/work
|
65 |
+
GPUtil==1.4.0
|
66 |
+
gradio==4.21.0
|
67 |
+
gradio_client==0.12.0
|
68 |
+
-e git+https://github.com/RuiningLi/Animal-Data-Engine.git@3b3e155f572ce797a28ca88766101e73369cba17#egg=groundingdino&subdirectory=utils/GroundingDINO
|
69 |
+
grpcio==1.59.3
|
70 |
+
h11==0.14.0
|
71 |
+
h5py==3.10.0
|
72 |
+
httpcore==1.0.2
|
73 |
+
httpx==0.25.2
|
74 |
+
huggingface-hub==0.19.4
|
75 |
+
humanfriendly==10.0
|
76 |
+
icecream==2.1.3
|
77 |
+
idna @ file:///croot/idna_1666125576474/work
|
78 |
+
imageio==2.32.0
|
79 |
+
imageio-ffmpeg==0.4.9
|
80 |
+
importlib-metadata==6.8.0
|
81 |
+
importlib-resources==6.1.1
|
82 |
+
iopath==0.1.9
|
83 |
+
ipython==8.12.3
|
84 |
+
jaxtyping==0.2.19
|
85 |
+
jedi==0.19.1
|
86 |
+
Jinja2 @ file:///croot/jinja2_1666908132255/work
|
87 |
+
joblib==1.3.2
|
88 |
+
jsonmerge==1.9.2
|
89 |
+
jsonschema==4.20.0
|
90 |
+
jsonschema-specifications==2023.11.2
|
91 |
+
k-diffusion==0.1.1.post1
|
92 |
+
kiwisolver==1.4.5
|
93 |
+
knot-floer-homology==1.2
|
94 |
+
kornia==0.7.1
|
95 |
+
lazy_loader==0.3
|
96 |
+
libigl==2.5.0
|
97 |
+
lightning==2.1.3
|
98 |
+
lightning-utilities==0.10.0
|
99 |
+
llvmlite==0.41.1
|
100 |
+
lmdb==1.4.1
|
101 |
+
loguru==0.7.2
|
102 |
+
lovely-numpy==0.2.10
|
103 |
+
lovely-tensors==0.1.15
|
104 |
+
low-index==1.2
|
105 |
+
lpips==0.1.4
|
106 |
+
Markdown==3.5.1
|
107 |
+
markdown-it-py==3.0.0
|
108 |
+
MarkupSafe @ file:///opt/conda/conda-bld/markupsafe_1654597864307/work
|
109 |
+
matplotlib==3.7.4
|
110 |
+
matplotlib-inline==0.1.6
|
111 |
+
mdurl==0.1.2
|
112 |
+
mkl-fft @ file:///croot/mkl_fft_1695058164594/work
|
113 |
+
mkl-random @ file:///croot/mkl_random_1695059800811/work
|
114 |
+
mkl-service==2.4.0
|
115 |
+
moviepy==1.0.3
|
116 |
+
mpmath @ file:///croot/mpmath_1690848262763/work
|
117 |
+
multidict==6.0.4
|
118 |
+
mypy-extensions==1.0.0
|
119 |
+
natsort==8.4.0
|
120 |
+
nerfacc==0.3.2
|
121 |
+
networkx @ file:///croot/networkx_1690561992265/work
|
122 |
+
ninja==1.11.1.1
|
123 |
+
numba==0.58.1
|
124 |
+
numpy @ file:///work/mkl/numpy_and_numpy_base_1682953417311/work
|
125 |
+
nvdiffrast @ git+https://github.com/NVlabs/nvdiffrast/@c5caf7bdb8a2448acc491a9faa47753972edd380
|
126 |
+
nvidia-ml-py @ file:///home/conda/feedstock_root/build_artifacts/nvidia-ml-py_1698947663801/work
|
127 |
+
oauthlib==3.2.2
|
128 |
+
objaverse==0.1.7
|
129 |
+
omegaconf==2.3.0
|
130 |
+
onnxruntime==1.16.3
|
131 |
+
opencv-python==4.8.1.78
|
132 |
+
opencv-python-headless==4.8.1.78
|
133 |
+
opt-einsum==3.3.0
|
134 |
+
orjson==3.9.10
|
135 |
+
packaging==23.2
|
136 |
+
pandas==1.3.0
|
137 |
+
parso==0.8.3
|
138 |
+
pexpect==4.8.0
|
139 |
+
pickleshare==0.7.5
|
140 |
+
Pillow @ file:///croot/pillow_1696580024257/work
|
141 |
+
pkgutil_resolve_name==1.3.10
|
142 |
+
platformdirs==4.0.0
|
143 |
+
plink==2.4.2
|
144 |
+
pooch==1.8.0
|
145 |
+
portalocker @ file:///home/conda/feedstock_root/build_artifacts/portalocker_1695662050140/work
|
146 |
+
proglog==0.1.10
|
147 |
+
prompt-toolkit==3.0.40
|
148 |
+
protobuf==4.25.1
|
149 |
+
psutil @ file:///opt/conda/conda-bld/psutil_1656431268089/work
|
150 |
+
ptyprocess==0.7.0
|
151 |
+
pure-eval==0.2.2
|
152 |
+
pyarrow==14.0.2
|
153 |
+
pyasn1==0.5.1
|
154 |
+
pyasn1-modules==0.3.0
|
155 |
+
pybind11==2.11.1
|
156 |
+
pycocotools==2.0.7
|
157 |
+
pycparser @ file:///tmp/build/80754af9/pycparser_1636541352034/work
|
158 |
+
pydantic==2.5.2
|
159 |
+
pydantic_core==2.14.5
|
160 |
+
pydensecrf @ git+https://github.com/lucasb-eyer/pydensecrf.git@dd070546eda51e21ab772ee6f14807c7f5b1548b
|
161 |
+
pyDeprecate==0.3.2
|
162 |
+
pydub==0.25.1
|
163 |
+
Pygments==2.16.1
|
164 |
+
pyhocon==0.3.57
|
165 |
+
PyMatting==1.1.12
|
166 |
+
PyMCubes==0.1.4
|
167 |
+
pynndescent==0.5.11
|
168 |
+
pyOpenSSL @ file:///croot/pyopenssl_1690223430423/work
|
169 |
+
pyparsing==3.1.1
|
170 |
+
pypng==0.20220715.0
|
171 |
+
PySocks @ file:///tmp/build/80754af9/pysocks_1605305779399/work
|
172 |
+
python-dateutil==2.8.2
|
173 |
+
python-multipart==0.0.9
|
174 |
+
pytorch-lightning==2.1.3
|
175 |
+
pytorch3d==0.7.5
|
176 |
+
pytz==2023.3.post1
|
177 |
+
PyWavelets==1.4.1
|
178 |
+
PyYAML @ file:///home/conda/feedstock_root/build_artifacts/pyyaml_1695373436676/work
|
179 |
+
referencing==0.31.1
|
180 |
+
regex==2023.10.3
|
181 |
+
rembg==2.0.52
|
182 |
+
requests @ file:///croot/requests_1690400202158/work
|
183 |
+
requests-oauthlib==1.3.1
|
184 |
+
rich==13.7.0
|
185 |
+
rpds-py==0.13.2
|
186 |
+
rsa==4.9
|
187 |
+
ruff==0.3.2
|
188 |
+
safetensors==0.4.0
|
189 |
+
scikit-image==0.21.0
|
190 |
+
scikit-learn==1.3.2
|
191 |
+
scipy==1.10.1
|
192 |
+
seaborn==0.13.1
|
193 |
+
-e git+https://github.com/RuiningLi/Animal-Data-Engine.git@3b3e155f572ce797a28ca88766101e73369cba17#egg=segment_anything&subdirectory=utils/segment_anything
|
194 |
+
semantic-version==2.10.0
|
195 |
+
sentry-sdk==1.35.0
|
196 |
+
setproctitle==1.3.3
|
197 |
+
shellingham==1.5.4
|
198 |
+
silence-tensorflow==1.2.1
|
199 |
+
six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work
|
200 |
+
smmap==5.0.1
|
201 |
+
snappy==3.1.1
|
202 |
+
snappy-manifolds==1.2
|
203 |
+
sniffio==1.3.0
|
204 |
+
spherogram==2.2.1
|
205 |
+
stack-data==0.6.3
|
206 |
+
starlette==0.27.0
|
207 |
+
submitit==1.5.1
|
208 |
+
supervision==0.16.0
|
209 |
+
support-developer==1.0.5
|
210 |
+
sympy @ file:///croot/sympy_1668202399572/work
|
211 |
+
tabulate @ file:///home/conda/feedstock_root/build_artifacts/tabulate_1665138452165/work
|
212 |
+
taming-transformers==0.0.1
|
213 |
+
taming-transformers-rom1504==0.0.6
|
214 |
+
tap.py==3.1
|
215 |
+
tb-nightly==2.14.0a20230808
|
216 |
+
tensorboard==2.14.0
|
217 |
+
tensorboard-data-server==0.7.2
|
218 |
+
tensorboardX==2.6.2.2
|
219 |
+
termcolor @ file:///home/conda/feedstock_root/build_artifacts/termcolor_1682317048417/work
|
220 |
+
threadpoolctl==3.2.0
|
221 |
+
tifffile==2023.7.10
|
222 |
+
timm==0.9.10
|
223 |
+
tinycudann @ git+https://github.com/NVlabs/tiny-cuda-nn@212104156403bd87616c1a4f73a1c5f2c2e172a9#subdirectory=bindings/torch
|
224 |
+
tokenizers==0.15.0
|
225 |
+
tomli==2.0.1
|
226 |
+
tomlkit==0.12.0
|
227 |
+
toolz==0.12.0
|
228 |
+
torch==2.1.0+cu118
|
229 |
+
torch-efficient-distloss==0.1.3
|
230 |
+
torch-ema==0.3
|
231 |
+
torchaudio==2.1.0+cu118
|
232 |
+
torchdiffeq==0.2.3
|
233 |
+
torchmetrics==0.11.4
|
234 |
+
torchsde==0.2.6
|
235 |
+
torchvision==0.16.0+cu118
|
236 |
+
tqdm @ file:///home/conda/feedstock_root/build_artifacts/tqdm_1691671248568/work
|
237 |
+
traitlets==5.13.0
|
238 |
+
trampoline==0.1.2
|
239 |
+
transformers==4.35.2
|
240 |
+
trimesh==4.0.5
|
241 |
+
triton==2.1.0
|
242 |
+
typeguard==4.1.5
|
243 |
+
typer==0.9.0
|
244 |
+
typing-inspect==0.9.0
|
245 |
+
typing_extensions==4.9.0
|
246 |
+
tzdata==2023.3
|
247 |
+
umap-learn==0.5.5
|
248 |
+
urllib3 @ file:///croot/urllib3_1698257533958/work
|
249 |
+
uvicorn==0.24.0.post1
|
250 |
+
wandb==0.16.0
|
251 |
+
wcwidth==0.2.13
|
252 |
+
websockets==11.0.3
|
253 |
+
Werkzeug==3.0.1
|
254 |
+
xatlas==0.0.8
|
255 |
+
yacs @ file:///home/conda/feedstock_root/build_artifacts/yacs_1645705974477/work
|
256 |
+
yapf==0.40.2
|
257 |
+
yarl==1.9.3
|
258 |
+
zipp==3.17.0
|