""" from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM import os access_token = os.environ['HF_TOKEN'] config = PeftConfig.from_pretrained("HiTZ/Mistral-7B-MedExpQA-EN") model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", token=access_token) model = PeftModel.from_pretrained(model, "HiTZ/Mistral-7B-MedExpQA-EN", token=access_token) tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", token=access_token) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) """ from huggingface_hub import InferenceClient import gradio as gr import os access_token = os.environ['HF_TOKEN'] import requests API_URL = "https://api-inference.huggingface.co/models/HiTZ/Mistral-7B-MedExpQA-EN" headers = {"Authorization": "Bearer "+access_token} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": "Can you please let us know more details about your ", }) """ client = InferenceClient("mistralai/Mistral-7B-v0.1",access_token) def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate( prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, ): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output additional_inputs=[ gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=1048, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.0, maximum=1, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] gr.ChatInterface( fn=generate, chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), additional_inputs=additional_inputs, title="Mistral 7B fine-tuned on MedExpQA with max RAG 32" ).launch(show_api=False) """