Spaces:
Runtime error
Runtime error
from diffusers import DiffusionPipeline, AutoencoderTiny, LCMScheduler | |
from compel import Compel | |
import torch | |
try: | |
import intel_extension_for_pytorch as ipex # type: ignore | |
except: | |
pass | |
import psutil | |
from config import Args | |
from pydantic import BaseModel, Field | |
from PIL import Image | |
base_model = "wavymulder/Analog-Diffusion" | |
lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" | |
taesd_model = "madebyollin/taesd" | |
default_prompt = "Analog style photograph of young Harrison Ford as Han Solo, star wars behind the scenes" | |
page_content = """ | |
<h1 class="text-3xl font-bold">Real-Time Latent Consistency Model SDv1.5</h1> | |
<h3 class="text-xl font-bold">Text-to-Image LCM + LoRa</h3> | |
<p class="text-sm"> | |
This demo showcases | |
<a | |
href="https://huggingface.co/blog/lcm_lora" | |
target="_blank" | |
class="text-blue-500 underline hover:no-underline">LCM</a> | |
Image to Image pipeline using | |
<a | |
href="https://huggingface.co/docs/diffusers/main/en/using-diffusers/lcm#performing-inference-with-lcm" | |
target="_blank" | |
class="text-blue-500 underline hover:no-underline">Diffusers</a | |
> with a MJPEG stream server. Featuring <a | |
href="https://huggingface.co/wavymulder/Analog-Diffusion" | |
target="_blank" | |
class="text-blue-500 underline hover:no-underline">Analog-Diffusion</a> | |
</p> | |
<p class="text-sm text-gray-500"> | |
Change the prompt to generate different images, accepts <a | |
href="https://github.com/damian0815/compel/blob/main/doc/syntax.md" | |
target="_blank" | |
class="text-blue-500 underline hover:no-underline">Compel</a | |
> syntax. | |
</p> | |
""" | |
class Pipeline: | |
class Info(BaseModel): | |
name: str = "controlnet" | |
title: str = "Text-to-Image LCM + LoRa" | |
description: str = "Generates an image from a text prompt" | |
input_mode: str = "text" | |
page_content: str = page_content | |
class InputParams(BaseModel): | |
prompt: str = Field( | |
default_prompt, | |
title="Prompt", | |
field="textarea", | |
id="prompt", | |
) | |
seed: int = Field( | |
8638236174640251, min=0, title="Seed", field="seed", hide=True, id="seed" | |
) | |
steps: int = Field( | |
4, min=2, max=15, title="Steps", field="range", hide=True, id="steps" | |
) | |
width: int = Field( | |
512, min=2, max=15, title="Width", disabled=True, hide=True, id="width" | |
) | |
height: int = Field( | |
512, min=2, max=15, title="Height", disabled=True, hide=True, id="height" | |
) | |
guidance_scale: float = Field( | |
0.2, | |
min=0, | |
max=4, | |
step=0.001, | |
title="Guidance Scale", | |
field="range", | |
hide=True, | |
id="guidance_scale", | |
) | |
def __init__(self, args: Args, device: torch.device, torch_dtype: torch.dtype): | |
if args.safety_checker: | |
self.pipe = DiffusionPipeline.from_pretrained(base_model) | |
else: | |
self.pipe = DiffusionPipeline.from_pretrained( | |
base_model, safety_checker=None | |
) | |
if args.taesd: | |
self.pipe.vae = AutoencoderTiny.from_pretrained( | |
taesd_model, torch_dtype=torch_dtype, use_safetensors=True | |
).to(device) | |
self.pipe.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.set_progress_bar_config(disable=True) | |
self.pipe.load_lora_weights(lcm_lora_id, adapter_name="lcm") | |
self.pipe.to(device=device, dtype=torch_dtype) | |
if device.type != "mps": | |
self.pipe.unet.to(memory_format=torch.channels_last) | |
if args.torch_compile: | |
self.pipe.unet = torch.compile( | |
self.pipe.unet, mode="reduce-overhead", fullgraph=True | |
) | |
self.pipe.vae = torch.compile( | |
self.pipe.vae, mode="reduce-overhead", fullgraph=True | |
) | |
self.pipe(prompt="warmup", num_inference_steps=1, guidance_scale=8.0) | |
if args.sfast: | |
from sfast.compilers.stable_diffusion_pipeline_compiler import ( | |
compile, | |
CompilationConfig, | |
) | |
config = CompilationConfig.Default() | |
config.enable_xformers = True | |
config.enable_triton = True | |
config.enable_cuda_graph = True | |
self.pipe = compile(self.pipe, config=config) | |
if args.compel: | |
self.compel_proc = Compel( | |
tokenizer=self.pipe.tokenizer, | |
text_encoder=self.pipe.text_encoder, | |
truncate_long_prompts=False, | |
) | |
def predict(self, params: "Pipeline.InputParams") -> Image.Image: | |
generator = torch.manual_seed(params.seed) | |
prompt_embeds = None | |
prompt = params.prompt | |
if hasattr(self, "compel_proc"): | |
prompt_embeds = self.compel_proc(params.prompt) | |
prompt = None | |
results = self.pipe( | |
prompt=prompt, | |
prompt_embeds=prompt_embeds, | |
generator=generator, | |
num_inference_steps=params.steps, | |
guidance_scale=params.guidance_scale, | |
width=params.width, | |
height=params.height, | |
output_type="pil", | |
) | |
nsfw_content_detected = ( | |
results.nsfw_content_detected[0] | |
if "nsfw_content_detected" in results | |
else False | |
) | |
if nsfw_content_detected: | |
return None | |
return results.images[0] | |