File size: 3,026 Bytes
ca822d3
759e112
9c5862c
ca822d3
 
 
 
9796138
ca822d3
 
8c2b71b
 
 
665ac47
b6e0a71
 
e356def
 
aa4560c
 
5c6a629
 
 
205e830
5c6a629
205e830
aa4560c
205e830
 
dd9c27c
aa4560c
dd9c27c
 
 
205e830
 
 
 
 
 
73b790b
3e47535
 
205e830
85c91b3
 
 
 
 
 
 
205e830
3e47535
 
 
b6e0a71
dd9c27c
205e830
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd9c27c
b6e0a71
73b790b
aa4560c
 
dd9c27c
b6e0a71
 
 
73b790b
b6e0a71
dd9c27c
aa4560c
dd9c27c
aa4560c
 
 
 
b6e0a71
 
 
 
 
 
aa4560c
 
1123781
 
 
 
 
 
b6e0a71
6732f1c
665ac47
dd9c27c
9e152c1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
title: Real-Time Latent Consistency Model Image-to-Image ControlNet
emoji: 🖼️🖼️
colorFrom: gray
colorTo: indigo
sdk: docker
pinned: false
suggested_hardware: a10g-small
---

# Real-Time Latent Consistency Model

This demo showcases [Latent Consistency Model (LCM)](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) using [Diffusers](https://github.com/huggingface/diffusers/tree/main/examples/community#latent-consistency-pipeline) with a MJPEG stream server.

You need a webcam to run this demo. 🤗

See a collecting with live demos [here](https://huggingface.co/collections/latent-consistency/latent-consistency-model-demos-654e90c52adb0688a0acbe6f)

## Running Locally

You need CUDA and Python 3.10, Mac with an M1/M2/M3 chip or Intel Arc GPU

`TIMEOUT`: limit user session timeout  
`SAFETY_CHECKER`: disabled if you want NSFW filter off  
`MAX_QUEUE_SIZE`: limit number of users on current app instance  
`TORCH_COMPILE`: enable if you want to use torch compile for faster inference works well on A100 GPUs


## Install

```bash
python -m venv venv
source venv/bin/activate
pip3 install -r requirements.txt
```

# LCM
### Image to Image

```bash
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
```

### Image to Image ControlNet Canny

Based pipeline from [taabata](https://github.com/taabata/LCM_Inpaint_Outpaint_Comfy)

```bash
uvicorn "app-controlnet:app" --host 0.0.0.0 --port 7860 --reload
```

### Text to Image

```bash
uvicorn "app-txt2img:app" --host 0.0.0.0 --port 7860 --reload
```

# LCM + LoRa

Using LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more here](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556)



### Image to Image ControlNet Canny LoRa


```bash
uvicorn "app-controlnetlora:app" --host 0.0.0.0 --port 7860 --reload
```

### Text to Image

```bash
uvicorn "app-txt2imglora:app" --host 0.0.0.0 --port 7860 --reload
```


### Setting environment variables

```bash
TIMEOUT=120 SAFETY_CHECKER=True MAX_QUEUE_SIZE=4 uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload
```

If you're running locally and want to test it on Mobile Safari, the webserver needs to be served over HTTPS.

```bash
openssl req -newkey rsa:4096 -nodes -keyout key.pem -x509 -days 365 -out certificate.pem
uvicorn "app-img2img:app" --host 0.0.0.0 --port 7860 --reload --log-level info --ssl-certfile=certificate.pem --ssl-keyfile=key.pem
```

## Docker

You need NVIDIA Container Toolkit for Docker

```bash
docker build -t lcm-live .
docker run -ti -p 7860:7860 --gpus all lcm-live
```

or with environment variables

```bash
docker run -ti -e TIMEOUT=0 -e SAFETY_CHECKER=False -p 7860:7860 --gpus all lcm-live
```
# Development Mode


```bash
python run.py --reload  
```

# Demo on Hugging Face

https://huggingface.co/spaces/radames/Real-Time-Latent-Consistency-Model

https://github.com/radames/Real-Time-Latent-Consistency-Model/assets/102277/c4003ac5-e7ff-44c0-97d3-464bb659de70