Spaces:
Building
on
A10G
Building
on
A10G
import os | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms.functional import normalize | |
from PIL import Image, ImageOps, ImageSequence | |
from typing import List | |
from pathlib import Path | |
from huggingface_hub import snapshot_download, hf_hub_download | |
def tensor_to_pil(images: torch.Tensor | List[torch.Tensor]) -> List[Image.Image]: | |
if not isinstance(images, list): | |
images = [images] | |
imgs = [] | |
for image in images: | |
i = 255.0 * image.cpu().numpy() | |
img = Image.fromarray(np.clip(np.squeeze(i), 0, 255).astype(np.uint8)) | |
imgs.append(img) | |
return imgs | |
def pad_image(input_image, background_color=(0, 0, 0)): | |
w, h = input_image.size | |
pad_w = (64 - w % 64) % 64 | |
pad_h = (64 - h % 64) % 64 | |
new_size = (w + pad_w, h + pad_h) | |
im_padded = Image.new(input_image.mode, new_size, background_color) | |
im_padded.paste(input_image, (pad_w // 2, pad_h // 2)) | |
if im_padded.size[0] == im_padded.size[1]: | |
return im_padded | |
elif im_padded.size[0] > im_padded.size[1]: | |
new_size = (im_padded.size[0], im_padded.size[0]) | |
new_image = Image.new(im_padded.mode, new_size, background_color) | |
new_image.paste(im_padded, (0, (new_size[1] - im_padded.size[1]) // 2)) | |
return new_image | |
else: | |
new_size = (im_padded.size[1], im_padded.size[1]) | |
new_image = Image.new(im_padded.mode, new_size, background_color) | |
new_image.paste(im_padded, ((new_size[0] - im_padded.size[0]) // 2, 0)) | |
return new_image | |
def pil_to_tensor(image: Image.Image) -> tuple[torch.Tensor, torch.Tensor]: | |
output_images = [] | |
output_masks = [] | |
for i in ImageSequence.Iterator(image): | |
i = ImageOps.exif_transpose(i) | |
if i.mode == "I": | |
i = i.point(lambda i: i * (1 / 255)) | |
image = i.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
if "A" in i.getbands(): | |
mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0 | |
mask = 1.0 - torch.from_numpy(mask) | |
else: | |
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") | |
output_images.append(image) | |
output_masks.append(mask.unsqueeze(0)) | |
if len(output_images) > 1: | |
output_image = torch.cat(output_images, dim=0) | |
output_mask = torch.cat(output_masks, dim=0) | |
else: | |
output_image = output_images[0] | |
output_mask = output_masks[0] | |
return (output_image, output_mask) | |
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor: | |
if len(im.shape) < 3: | |
im = im[:, :, np.newaxis] | |
# orig_im_size=im.shape[0:2] | |
im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1) | |
im_tensor = F.interpolate( | |
torch.unsqueeze(im_tensor, 0), size=model_input_size, mode="bilinear" | |
).type(torch.uint8) | |
image = torch.divide(im_tensor, 255.0) | |
image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) | |
return image | |
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray: | |
result = torch.squeeze(F.interpolate(result, size=im_size, mode="bilinear"), 0) | |
ma = torch.max(result) | |
mi = torch.min(result) | |
result = (result - mi) / (ma - mi) | |
im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8) | |
im_array = np.squeeze(im_array) | |
return im_array | |
def downloadModels(): | |
MODEL_PATH = snapshot_download( | |
repo_id="RunDiffusion/Juggernaut-XL-v6", allow_patterns="*.safetensors" | |
) | |
LAYERS_PATH = snapshot_download( | |
repo_id="LayerDiffusion/layerdiffusion-v1", allow_patterns="*.safetensors" | |
) | |
for file in Path(LAYERS_PATH).glob("*.safetensors"): | |
target_path = Path(f"./ComfyUI/models/layer_model/{file.name}") | |
if not target_path.exists(): | |
os.symlink(file, target_path) | |
for model in Path(MODEL_PATH).glob("*.safetensors"): | |
model_target_path = Path(f"./ComfyUI/models/checkpoints/{model.name}") | |
if not model_target_path.exists(): | |
os.symlink(model, model_target_path) | |
examples = [ | |
[ | |
"A very cute monster cat on a glass bottle", | |
"ugly distorted image, low quality, text, bad, not good ,watermark", | |
None, | |
False, | |
None, | |
1231231, | |
5, | |
], | |
[ | |
"A picture from above captures a beautiful, small toucan bird flying in the sky.", | |
"ugly distorted image, low quality, text, bad, not good ,watermark", | |
"./examples/bg.png", | |
False, | |
"SDXL, Background", | |
1234144, | |
8, | |
], | |
[ | |
"a photo a men surrounded by a crowd of people in a circle", | |
"ugly distorted image, low quality, text, bad, not good ,watermark", | |
"./examples/lecun.png", | |
True, | |
"SDXL, Foreground", | |
123123, | |
10, | |
], | |
[ | |
"An image of a galaxy", | |
"ugly distorted image, low quality, text, bad, not good ,watermark", | |
"./examples/julien.png", | |
True, | |
"SDXL, Foreground", | |
123123, | |
10, | |
], | |
[ | |
"a men jumping on swiming pool full of people", | |
"ugly distorted image, low quality, text, bad, not good ,watermark", | |
"./examples/old_jump.png", | |
False, | |
"SDXL, Foreground", | |
5350795678007195000, | |
10, | |
], | |
[ | |
"a cute cat flying over Manhattan time square", | |
"ugly distorted image, low quality, text, bad, not good ,watermark", | |
"./examples/cat.png", | |
True, | |
"SDXL, Foreground", | |
123123, | |
10, | |
], | |
] | |