Spaces:
Building
on
A10G
Building
on
A10G
import numpy as np | |
import torch | |
import comfy.utils | |
from enum import Enum | |
def resize_mask(mask, shape): | |
return torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[0], shape[1]), mode="bilinear").squeeze(1) | |
class PorterDuffMode(Enum): | |
ADD = 0 | |
CLEAR = 1 | |
DARKEN = 2 | |
DST = 3 | |
DST_ATOP = 4 | |
DST_IN = 5 | |
DST_OUT = 6 | |
DST_OVER = 7 | |
LIGHTEN = 8 | |
MULTIPLY = 9 | |
OVERLAY = 10 | |
SCREEN = 11 | |
SRC = 12 | |
SRC_ATOP = 13 | |
SRC_IN = 14 | |
SRC_OUT = 15 | |
SRC_OVER = 16 | |
XOR = 17 | |
def porter_duff_composite(src_image: torch.Tensor, src_alpha: torch.Tensor, dst_image: torch.Tensor, dst_alpha: torch.Tensor, mode: PorterDuffMode): | |
if mode == PorterDuffMode.ADD: | |
out_alpha = torch.clamp(src_alpha + dst_alpha, 0, 1) | |
out_image = torch.clamp(src_image + dst_image, 0, 1) | |
elif mode == PorterDuffMode.CLEAR: | |
out_alpha = torch.zeros_like(dst_alpha) | |
out_image = torch.zeros_like(dst_image) | |
elif mode == PorterDuffMode.DARKEN: | |
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | |
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.min(src_image, dst_image) | |
elif mode == PorterDuffMode.DST: | |
out_alpha = dst_alpha | |
out_image = dst_image | |
elif mode == PorterDuffMode.DST_ATOP: | |
out_alpha = src_alpha | |
out_image = src_alpha * dst_image + (1 - dst_alpha) * src_image | |
elif mode == PorterDuffMode.DST_IN: | |
out_alpha = src_alpha * dst_alpha | |
out_image = dst_image * src_alpha | |
elif mode == PorterDuffMode.DST_OUT: | |
out_alpha = (1 - src_alpha) * dst_alpha | |
out_image = (1 - src_alpha) * dst_image | |
elif mode == PorterDuffMode.DST_OVER: | |
out_alpha = dst_alpha + (1 - dst_alpha) * src_alpha | |
out_image = dst_image + (1 - dst_alpha) * src_image | |
elif mode == PorterDuffMode.LIGHTEN: | |
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | |
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image + torch.max(src_image, dst_image) | |
elif mode == PorterDuffMode.MULTIPLY: | |
out_alpha = src_alpha * dst_alpha | |
out_image = src_image * dst_image | |
elif mode == PorterDuffMode.OVERLAY: | |
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | |
out_image = torch.where(2 * dst_image < dst_alpha, 2 * src_image * dst_image, | |
src_alpha * dst_alpha - 2 * (dst_alpha - src_image) * (src_alpha - dst_image)) | |
elif mode == PorterDuffMode.SCREEN: | |
out_alpha = src_alpha + dst_alpha - src_alpha * dst_alpha | |
out_image = src_image + dst_image - src_image * dst_image | |
elif mode == PorterDuffMode.SRC: | |
out_alpha = src_alpha | |
out_image = src_image | |
elif mode == PorterDuffMode.SRC_ATOP: | |
out_alpha = dst_alpha | |
out_image = dst_alpha * src_image + (1 - src_alpha) * dst_image | |
elif mode == PorterDuffMode.SRC_IN: | |
out_alpha = src_alpha * dst_alpha | |
out_image = src_image * dst_alpha | |
elif mode == PorterDuffMode.SRC_OUT: | |
out_alpha = (1 - dst_alpha) * src_alpha | |
out_image = (1 - dst_alpha) * src_image | |
elif mode == PorterDuffMode.SRC_OVER: | |
out_alpha = src_alpha + (1 - src_alpha) * dst_alpha | |
out_image = src_image + (1 - src_alpha) * dst_image | |
elif mode == PorterDuffMode.XOR: | |
out_alpha = (1 - dst_alpha) * src_alpha + (1 - src_alpha) * dst_alpha | |
out_image = (1 - dst_alpha) * src_image + (1 - src_alpha) * dst_image | |
else: | |
out_alpha = None | |
out_image = None | |
return out_image, out_alpha | |
class PorterDuffImageComposite: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"source": ("IMAGE",), | |
"source_alpha": ("MASK",), | |
"destination": ("IMAGE",), | |
"destination_alpha": ("MASK",), | |
"mode": ([mode.name for mode in PorterDuffMode], {"default": PorterDuffMode.DST.name}), | |
}, | |
} | |
RETURN_TYPES = ("IMAGE", "MASK") | |
FUNCTION = "composite" | |
CATEGORY = "mask/compositing" | |
def composite(self, source: torch.Tensor, source_alpha: torch.Tensor, destination: torch.Tensor, destination_alpha: torch.Tensor, mode): | |
batch_size = min(len(source), len(source_alpha), len(destination), len(destination_alpha)) | |
out_images = [] | |
out_alphas = [] | |
for i in range(batch_size): | |
src_image = source[i] | |
dst_image = destination[i] | |
assert src_image.shape[2] == dst_image.shape[2] # inputs need to have same number of channels | |
src_alpha = source_alpha[i].unsqueeze(2) | |
dst_alpha = destination_alpha[i].unsqueeze(2) | |
if dst_alpha.shape[:2] != dst_image.shape[:2]: | |
upscale_input = dst_alpha.unsqueeze(0).permute(0, 3, 1, 2) | |
upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') | |
dst_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) | |
if src_image.shape != dst_image.shape: | |
upscale_input = src_image.unsqueeze(0).permute(0, 3, 1, 2) | |
upscale_output = comfy.utils.common_upscale(upscale_input, dst_image.shape[1], dst_image.shape[0], upscale_method='bicubic', crop='center') | |
src_image = upscale_output.permute(0, 2, 3, 1).squeeze(0) | |
if src_alpha.shape != dst_alpha.shape: | |
upscale_input = src_alpha.unsqueeze(0).permute(0, 3, 1, 2) | |
upscale_output = comfy.utils.common_upscale(upscale_input, dst_alpha.shape[1], dst_alpha.shape[0], upscale_method='bicubic', crop='center') | |
src_alpha = upscale_output.permute(0, 2, 3, 1).squeeze(0) | |
out_image, out_alpha = porter_duff_composite(src_image, src_alpha, dst_image, dst_alpha, PorterDuffMode[mode]) | |
out_images.append(out_image) | |
out_alphas.append(out_alpha.squeeze(2)) | |
result = (torch.stack(out_images), torch.stack(out_alphas)) | |
return result | |
class SplitImageWithAlpha: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
} | |
} | |
CATEGORY = "mask/compositing" | |
RETURN_TYPES = ("IMAGE", "MASK") | |
FUNCTION = "split_image_with_alpha" | |
def split_image_with_alpha(self, image: torch.Tensor): | |
out_images = [i[:,:,:3] for i in image] | |
out_alphas = [i[:,:,3] if i.shape[2] > 3 else torch.ones_like(i[:,:,0]) for i in image] | |
result = (torch.stack(out_images), 1.0 - torch.stack(out_alphas)) | |
return result | |
class JoinImageWithAlpha: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"image": ("IMAGE",), | |
"alpha": ("MASK",), | |
} | |
} | |
CATEGORY = "mask/compositing" | |
RETURN_TYPES = ("IMAGE",) | |
FUNCTION = "join_image_with_alpha" | |
def join_image_with_alpha(self, image: torch.Tensor, alpha: torch.Tensor): | |
batch_size = min(len(image), len(alpha)) | |
out_images = [] | |
alpha = 1.0 - resize_mask(alpha, image.shape[1:]) | |
for i in range(batch_size): | |
out_images.append(torch.cat((image[i][:,:,:3], alpha[i].unsqueeze(2)), dim=2)) | |
result = (torch.stack(out_images),) | |
return result | |
NODE_CLASS_MAPPINGS = { | |
"PorterDuffImageComposite": PorterDuffImageComposite, | |
"SplitImageWithAlpha": SplitImageWithAlpha, | |
"JoinImageWithAlpha": JoinImageWithAlpha, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"PorterDuffImageComposite": "Porter-Duff Image Composite", | |
"SplitImageWithAlpha": "Split Image with Alpha", | |
"JoinImageWithAlpha": "Join Image with Alpha", | |
} | |