Spaces:
Runtime error
Runtime error
Roger Condori
commited on
Commit
β’
057f5e7
1
Parent(s):
33e49c0
add links and openai model
Browse files- app.py +52 -23
- conversadocs/bones.py +39 -17
- requirements.txt +1 -0
app.py
CHANGED
@@ -37,18 +37,31 @@ else:
|
|
37 |
os.system('pip install llama-cpp-python')
|
38 |
|
39 |
css="""
|
40 |
-
#col-container {max-width:
|
41 |
"""
|
42 |
|
43 |
title = """
|
44 |
-
<div style="text-align: center;max-width:
|
45 |
-
<
|
46 |
-
<p style="text-align: center;">Upload txt, pdf, doc, docx, enex, epub, html, md, odt, ptt
|
47 |
-
Wait for the Status to show Loaded documents, start typing your questions. <br
|
48 |
-
The app is set to store chat-history</p>
|
49 |
</div>
|
50 |
"""
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
theme='aliabid94/new-theme'
|
53 |
|
54 |
def flag():
|
@@ -58,9 +71,10 @@ def upload_file(files, max_docs):
|
|
58 |
file_paths = [file.name for file in files]
|
59 |
return dc.call_load_db(file_paths, max_docs)
|
60 |
|
61 |
-
def predict(message, chat_history, max_k):
|
62 |
print(message)
|
63 |
-
|
|
|
64 |
print(bot_message)
|
65 |
return "", dc.get_chats()
|
66 |
|
@@ -77,6 +91,10 @@ def convert():
|
|
77 |
data_docs += f"<hr><h3 style='color:red;'>{pg}</h2><p>{txt}</p><p>{sc}</p>"
|
78 |
return data_docs
|
79 |
|
|
|
|
|
|
|
|
|
80 |
# Max values in generation
|
81 |
DOC_DB_LIMIT = 10
|
82 |
MAX_NEW_TOKENS = 2048
|
@@ -89,25 +107,25 @@ if "SET_LIMIT" == os.getenv("DEMO"):
|
|
89 |
with gr.Blocks(theme=theme, css=css) as demo:
|
90 |
with gr.Tab("Chat"):
|
91 |
|
92 |
-
with gr.Column(
|
93 |
gr.HTML(title)
|
94 |
-
upload_button = gr.UploadButton("Click to Upload Files",
|
95 |
file_output = gr.HTML()
|
96 |
-
|
|
|
97 |
msg = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
|
|
|
|
|
|
|
|
98 |
|
99 |
with gr.Column():
|
|
|
100 |
sou = gr.HTML("")
|
101 |
|
102 |
-
with gr.Tab("Chat Options"):
|
103 |
-
max_docs = gr.inputs.Slider(1, DOC_DB_LIMIT, default=3, label="Maximum querys to the DB.", step=1)
|
104 |
-
row_table = gr.HTML("<hr><h4> </h2>")
|
105 |
-
clear_button = gr.Button("CLEAR CHAT HISTORY", )
|
106 |
-
link_output = gr.HTML("")
|
107 |
clear_button.click(flag,[],[link_output]).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False)
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
with gr.Tab("Change model"):
|
112 |
gr.HTML("<h3>Only models from the GGML library are accepted.</h3>")
|
113 |
repo_ = gr.Textbox(label="Repository" ,value="TheBloke/Llama-2-7B-Chat-GGML")
|
@@ -118,14 +136,25 @@ with gr.Blocks(theme=theme, css=css) as demo:
|
|
118 |
top_p = gr.inputs.Slider(0, 100, default=50, label="Top P", step=1)
|
119 |
repeat_penalty = gr.inputs.Slider(0.1, 100., default=1.2, label="Repeat penalty", step=0.1)
|
120 |
change_model_button = gr.Button("Load GGML Model")
|
121 |
-
|
122 |
-
default_model = gr.HTML("<hr
|
123 |
falcon_button = gr.Button("Load FALCON 7B-Instruct")
|
124 |
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
change_model_button.click(dc.change_llm,[repo_, file_, max_tokens, temperature, top_p, top_k, repeat_penalty, max_docs],[model_verify])
|
128 |
|
129 |
falcon_button.click(dc.default_falcon_model, [], [model_verify])
|
|
|
130 |
|
131 |
-
demo.launch(enable_queue=True)
|
|
|
37 |
os.system('pip install llama-cpp-python')
|
38 |
|
39 |
css="""
|
40 |
+
#col-container {max-width: 1500px; margin-left: auto; margin-right: auto;}
|
41 |
"""
|
42 |
|
43 |
title = """
|
44 |
+
<div style="text-align: center;max-width: 1500px;">
|
45 |
+
<h3>Chat with Documents π - Falcon, Llama-2</h3>
|
46 |
+
<p style="text-align: center;">Upload txt, pdf, doc, docx, enex, epub, html, md, odt, ptt and pttx.
|
47 |
+
Wait for the Status to show Loaded documents, start typing your questions. This is a demo of <a href="https://github.com/R3gm/ConversaDocs">ConversaDocs</a>.<br /></p>
|
|
|
48 |
</div>
|
49 |
"""
|
50 |
|
51 |
+
description = """
|
52 |
+
# Application Information
|
53 |
+
|
54 |
+
- Notebook for run ConversaDocs in Colab [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/ConversaDocs/blob/main/ConversaDocs_Colab.ipynb)
|
55 |
+
|
56 |
+
- Oficial Repository [![a](https://img.shields.io/badge/GitHub-Repository-black?style=flat-square&logo=github)](https://github.com/R3gm/ConversaDocs/)
|
57 |
+
|
58 |
+
- This application works on both CPU and GPU. For fast inference with GGML models, use the GPU.
|
59 |
+
|
60 |
+
- You can clone the 'space' but to make it work, you need to set My_hf_token in secrets with a valid huggingface [token](https://huggingface.co/settings/tokens)
|
61 |
+
|
62 |
+
- For more information about what GGML models are, you can visit this notebook [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/R3gm/InsightSolver-Colab/blob/main/LLM_Inference_with_llama_cpp_python__Llama_2_13b_chat.ipynb)
|
63 |
+
"""
|
64 |
+
|
65 |
theme='aliabid94/new-theme'
|
66 |
|
67 |
def flag():
|
|
|
71 |
file_paths = [file.name for file in files]
|
72 |
return dc.call_load_db(file_paths, max_docs)
|
73 |
|
74 |
+
def predict(message, chat_history, max_k, check_memory):
|
75 |
print(message)
|
76 |
+
print(check_memory)
|
77 |
+
bot_message = dc.convchain(message, max_k, check_memory)
|
78 |
print(bot_message)
|
79 |
return "", dc.get_chats()
|
80 |
|
|
|
91 |
data_docs += f"<hr><h3 style='color:red;'>{pg}</h2><p>{txt}</p><p>{sc}</p>"
|
92 |
return data_docs
|
93 |
|
94 |
+
def clear_api_key(api_key):
|
95 |
+
return 'api_key...', dc.openai_model(api_key)
|
96 |
+
|
97 |
+
|
98 |
# Max values in generation
|
99 |
DOC_DB_LIMIT = 10
|
100 |
MAX_NEW_TOKENS = 2048
|
|
|
107 |
with gr.Blocks(theme=theme, css=css) as demo:
|
108 |
with gr.Tab("Chat"):
|
109 |
|
110 |
+
with gr.Column():
|
111 |
gr.HTML(title)
|
112 |
+
upload_button = gr.UploadButton("Click to Upload Files", file_count="multiple")
|
113 |
file_output = gr.HTML()
|
114 |
+
|
115 |
+
chatbot = gr.Chatbot([], elem_id="chatbot") #.style(height=300)
|
116 |
msg = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
117 |
+
with gr.Row():
|
118 |
+
check_memory = gr.inputs.Checkbox(label="Remember previous messages")
|
119 |
+
clear_button = gr.Button("CLEAR CHAT HISTORY", )
|
120 |
+
max_docs = gr.inputs.Slider(1, DOC_DB_LIMIT, default=3, label="Maximum querys to the DB.", step=1)
|
121 |
|
122 |
with gr.Column():
|
123 |
+
link_output = gr.HTML("")
|
124 |
sou = gr.HTML("")
|
125 |
|
|
|
|
|
|
|
|
|
|
|
126 |
clear_button.click(flag,[],[link_output]).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False)
|
127 |
+
upload_button.upload(flag,[],[file_output]).then(upload_file, [upload_button, max_docs], file_output).then(dc.clr_history,[], [link_output]).then(lambda: None, None, chatbot, queue=False)
|
128 |
+
|
|
|
129 |
with gr.Tab("Change model"):
|
130 |
gr.HTML("<h3>Only models from the GGML library are accepted.</h3>")
|
131 |
repo_ = gr.Textbox(label="Repository" ,value="TheBloke/Llama-2-7B-Chat-GGML")
|
|
|
136 |
top_p = gr.inputs.Slider(0, 100, default=50, label="Top P", step=1)
|
137 |
repeat_penalty = gr.inputs.Slider(0.1, 100., default=1.2, label="Repeat penalty", step=0.1)
|
138 |
change_model_button = gr.Button("Load GGML Model")
|
139 |
+
|
140 |
+
default_model = gr.HTML("<hr>Default Model</h2>")
|
141 |
falcon_button = gr.Button("Load FALCON 7B-Instruct")
|
142 |
|
143 |
+
openai_gpt_model = gr.HTML("<hr>OpenAI Model gpt-3.5-turbo</h2>")
|
144 |
+
api_key = gr.Textbox(label="API KEY", value="api_key...")
|
145 |
+
openai_button = gr.Button("Load gpt-3.5-turbo")
|
146 |
+
|
147 |
+
line_ = gr.HTML("<hr> </h2>")
|
148 |
+
model_verify = gr.HTML("Loaded model Falcon 7B-instruct")
|
149 |
+
|
150 |
+
with gr.Tab("About"):
|
151 |
+
description_md = gr.Markdown(description)
|
152 |
+
|
153 |
+
msg.submit(predict,[msg, chatbot, max_docs, check_memory],[msg, chatbot]).then(convert,[],[sou])
|
154 |
|
155 |
change_model_button.click(dc.change_llm,[repo_, file_, max_tokens, temperature, top_p, top_k, repeat_penalty, max_docs],[model_verify])
|
156 |
|
157 |
falcon_button.click(dc.default_falcon_model, [], [model_verify])
|
158 |
+
openai_button.click(clear_api_key, [api_key], [api_key, model_verify])
|
159 |
|
160 |
+
demo.launch(debug=True,share=True, enable_queue=True)
|
conversadocs/bones.py
CHANGED
@@ -38,7 +38,7 @@ llm_api=HuggingFaceHub(
|
|
38 |
|
39 |
|
40 |
#alter
|
41 |
-
def load_db(files
|
42 |
EXTENSIONS = {
|
43 |
".txt": (TextLoader, {"encoding": "utf8"}),
|
44 |
".pdf": (PyPDFLoader, {}),
|
@@ -81,7 +81,9 @@ def load_db(files, chain_type, k, llm):
|
|
81 |
|
82 |
# create vector database from data
|
83 |
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
|
84 |
-
|
|
|
|
|
85 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
86 |
# create a chatbot chain. Memory is managed externally.
|
87 |
qa = ConversationalRetrievalChain.from_llm(
|
@@ -94,6 +96,7 @@ def load_db(files, chain_type, k, llm):
|
|
94 |
return qa
|
95 |
|
96 |
|
|
|
97 |
class DocChat(param.Parameterized):
|
98 |
chat_history = param.List([])
|
99 |
answer = param.String("")
|
@@ -106,28 +109,42 @@ class DocChat(param.Parameterized):
|
|
106 |
def __init__(self, **params):
|
107 |
super(DocChat, self).__init__( **params)
|
108 |
self.loaded_file = "demo_docs/demo.txt"
|
109 |
-
self.
|
|
|
|
|
110 |
|
111 |
def call_load_db(self, path_file, k):
|
112 |
if not os.path.exists(path_file[0]): # init or no file specified
|
113 |
return "No file loaded"
|
114 |
else:
|
115 |
try:
|
116 |
-
self.
|
117 |
self.loaded_file = path_file
|
|
|
|
|
|
|
|
|
118 |
except:
|
119 |
return f'No valid file'
|
120 |
-
|
121 |
-
return f"New DB created | Loaded File: {self.loaded_file}"
|
122 |
|
123 |
# chat
|
124 |
-
def convchain(self, query, k_max):
|
125 |
if k_max != self.k_value:
|
126 |
-
print("Maximum querys changed
|
127 |
-
self.qa =
|
128 |
self.k_value = k_max
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
self.chat_history.extend([(query, result["answer"])])
|
132 |
self.db_query = result["generated_question"]
|
133 |
self.db_response = result["source_documents"]
|
@@ -152,9 +169,9 @@ class DocChat(param.Parameterized):
|
|
152 |
top_k=top_k,
|
153 |
repeat_penalty=repeat_penalty,
|
154 |
)
|
155 |
-
self.qa =
|
156 |
self.k_value = k
|
157 |
-
return f"Loaded {file_}"
|
158 |
except:
|
159 |
return "No valid model"
|
160 |
else:
|
@@ -172,17 +189,22 @@ class DocChat(param.Parameterized):
|
|
172 |
top_k=top_k,
|
173 |
repeat_penalty=repeat_penalty,
|
174 |
)
|
175 |
-
self.qa =
|
176 |
self.k_value = k
|
177 |
-
return f"Loaded {file_}"
|
178 |
except:
|
179 |
return "No valid model"
|
180 |
|
181 |
def default_falcon_model(self):
|
182 |
self.llm = llm_api[0]
|
183 |
-
self.qa =
|
184 |
-
return "Loaded model Falcon 7B-instruct"
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
@param.depends('db_query ', )
|
188 |
def get_lquest(self):
|
|
|
38 |
|
39 |
|
40 |
#alter
|
41 |
+
def load_db(files):
|
42 |
EXTENSIONS = {
|
43 |
".txt": (TextLoader, {"encoding": "utf8"}),
|
44 |
".pdf": (PyPDFLoader, {}),
|
|
|
81 |
|
82 |
# create vector database from data
|
83 |
db = DocArrayInMemorySearch.from_documents(docs, embeddings)
|
84 |
+
return db
|
85 |
+
|
86 |
+
def q_a(db, chain_type="stuff", k=3, llm=None):
|
87 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
88 |
# create a chatbot chain. Memory is managed externally.
|
89 |
qa = ConversationalRetrievalChain.from_llm(
|
|
|
96 |
return qa
|
97 |
|
98 |
|
99 |
+
|
100 |
class DocChat(param.Parameterized):
|
101 |
chat_history = param.List([])
|
102 |
answer = param.String("")
|
|
|
109 |
def __init__(self, **params):
|
110 |
super(DocChat, self).__init__( **params)
|
111 |
self.loaded_file = "demo_docs/demo.txt"
|
112 |
+
self.db = load_db(self.loaded_file)
|
113 |
+
self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
|
114 |
+
|
115 |
|
116 |
def call_load_db(self, path_file, k):
|
117 |
if not os.path.exists(path_file[0]): # init or no file specified
|
118 |
return "No file loaded"
|
119 |
else:
|
120 |
try:
|
121 |
+
self.db = load_db(path_file)
|
122 |
self.loaded_file = path_file
|
123 |
+
self.qa = q_a(self.db, "stuff", k, self.llm)
|
124 |
+
self.k_value = k
|
125 |
+
#self.clr_history()
|
126 |
+
return f"New DB created and history cleared | Loaded File: {self.loaded_file}"
|
127 |
except:
|
128 |
return f'No valid file'
|
129 |
+
|
|
|
130 |
|
131 |
# chat
|
132 |
+
def convchain(self, query, k_max, recall_previous_messages):
|
133 |
if k_max != self.k_value:
|
134 |
+
print("Maximum querys changed")
|
135 |
+
self.qa = q_a(self.db, "stuff", k_max, self.llm)
|
136 |
self.k_value = k_max
|
137 |
|
138 |
+
if not recall_previous_messages:
|
139 |
+
self.clr_history()
|
140 |
+
|
141 |
+
try:
|
142 |
+
result = self.qa({"question": query, "chat_history": self.chat_history})
|
143 |
+
except:
|
144 |
+
self.default_falcon_model()
|
145 |
+
self.qa = q_a(self.db, "stuff", k_max, self.llm)
|
146 |
+
result = self.qa({"question": query, "chat_history": self.chat_history})
|
147 |
+
|
148 |
self.chat_history.extend([(query, result["answer"])])
|
149 |
self.db_query = result["generated_question"]
|
150 |
self.db_response = result["source_documents"]
|
|
|
169 |
top_k=top_k,
|
170 |
repeat_penalty=repeat_penalty,
|
171 |
)
|
172 |
+
self.qa = q_a(self.db, "stuff", k, self.llm)
|
173 |
self.k_value = k
|
174 |
+
return f"Loaded {file_} [GPU INFERENCE]"
|
175 |
except:
|
176 |
return "No valid model"
|
177 |
else:
|
|
|
189 |
top_k=top_k,
|
190 |
repeat_penalty=repeat_penalty,
|
191 |
)
|
192 |
+
self.qa = q_a(self.db, "stuff", k, self.llm)
|
193 |
self.k_value = k
|
194 |
+
return f"Loaded {file_} [CPU INFERENCE SLOW]"
|
195 |
except:
|
196 |
return "No valid model"
|
197 |
|
198 |
def default_falcon_model(self):
|
199 |
self.llm = llm_api[0]
|
200 |
+
self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
|
201 |
+
return "Loaded model Falcon 7B-instruct [API FAST INFERENCE]"
|
202 |
+
|
203 |
+
def openai_model(self, API_KEY):
|
204 |
+
self.llm = ChatOpenAI(temperature=0, openai_api_key=API_KEY, model_name='gpt-3.5-turbo')
|
205 |
+
self.qa = q_a(self.db, "stuff", self.k_value, self.llm)
|
206 |
+
API_KEY = ""
|
207 |
+
return "Loaded model OpenAI gpt-3.5-turbo [API FAST INFERENCE] | If there is no response from the API, Falcon 7B-instruct will be used."
|
208 |
|
209 |
@param.depends('db_query ', )
|
210 |
def get_lquest(self):
|
requirements.txt
CHANGED
@@ -11,3 +11,4 @@ huggingface_hub
|
|
11 |
unstructured[local-inference]
|
12 |
gradio==3.35.2
|
13 |
param==1.13.0
|
|
|
|
11 |
unstructured[local-inference]
|
12 |
gradio==3.35.2
|
13 |
param==1.13.0
|
14 |
+
openai
|