Spaces:
Running
on
Zero
Running
on
Zero
Gradio app
Browse files- app.py +38 -0
- inference_gradio.py +352 -0
- packages.txt +1 -0
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from inference_gradio import inference_one_image, model_init
|
4 |
+
|
5 |
+
MODEL_PATH = "./checkpoints/docres.pkl"
|
6 |
+
|
7 |
+
model = model_init(MODEL_PATH)
|
8 |
+
possible_tasks = [
|
9 |
+
"dewarping",
|
10 |
+
"deshadowing",
|
11 |
+
"appearance",
|
12 |
+
"deblurring",
|
13 |
+
"binarization",
|
14 |
+
]
|
15 |
+
|
16 |
+
@spaces.GPU
|
17 |
+
def run_tasks(image, tasks):
|
18 |
+
bgr_image = image[..., ::-1].copy()
|
19 |
+
bgr_restored_image = inference_one_image(model, bgr_image, tasks)
|
20 |
+
if bgr_restored_image.ndim == 3:
|
21 |
+
rgb_image = bgr_restored_image[..., ::-1]
|
22 |
+
else:
|
23 |
+
rgb_image = bgr_restored_image
|
24 |
+
return rgb_image
|
25 |
+
|
26 |
+
|
27 |
+
with gr.Blocks() as demo:
|
28 |
+
with gr.Row():
|
29 |
+
input_image = gr.Image(type="numpy")
|
30 |
+
output_image = gr.Image(type="numpy")
|
31 |
+
|
32 |
+
task = gr.CheckboxGroup(choices=possible_tasks, label="Choose tasks:")
|
33 |
+
button = gr.Button()
|
34 |
+
button.click(
|
35 |
+
run_tasks, inputs=[input_image, task], outputs=[output_image]
|
36 |
+
)
|
37 |
+
|
38 |
+
demo.launch()
|
inference_gradio.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import cv2
|
3 |
+
import utils
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from utils import convert_state_dict
|
10 |
+
from models import restormer_arch
|
11 |
+
from data.preprocess.crop_merge_image import stride_integral
|
12 |
+
|
13 |
+
sys.path.append("./data/MBD/")
|
14 |
+
from data.MBD.infer import net1_net2_infer_single_im
|
15 |
+
|
16 |
+
|
17 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
|
20 |
+
def dewarp_prompt(img):
|
21 |
+
mask = net1_net2_infer_single_im(img, "data/MBD/checkpoint/mbd.pkl")
|
22 |
+
base_coord = utils.getBasecoord(256, 256) / 256
|
23 |
+
img[mask == 0] = 0
|
24 |
+
mask = cv2.resize(mask, (256, 256)) / 255
|
25 |
+
return img, np.concatenate((base_coord, np.expand_dims(mask, -1)), -1)
|
26 |
+
|
27 |
+
|
28 |
+
def deshadow_prompt(img):
|
29 |
+
h, w = img.shape[:2]
|
30 |
+
# img = cv2.resize(img,(128,128))
|
31 |
+
img = cv2.resize(img, (1024, 1024))
|
32 |
+
rgb_planes = cv2.split(img)
|
33 |
+
result_planes = []
|
34 |
+
result_norm_planes = []
|
35 |
+
bg_imgs = []
|
36 |
+
for plane in rgb_planes:
|
37 |
+
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
|
38 |
+
bg_img = cv2.medianBlur(dilated_img, 21)
|
39 |
+
bg_imgs.append(bg_img)
|
40 |
+
diff_img = 255 - cv2.absdiff(plane, bg_img)
|
41 |
+
norm_img = cv2.normalize(
|
42 |
+
diff_img,
|
43 |
+
None,
|
44 |
+
alpha=0,
|
45 |
+
beta=255,
|
46 |
+
norm_type=cv2.NORM_MINMAX,
|
47 |
+
dtype=cv2.CV_8UC1,
|
48 |
+
)
|
49 |
+
result_planes.append(diff_img)
|
50 |
+
result_norm_planes.append(norm_img)
|
51 |
+
bg_imgs = cv2.merge(bg_imgs)
|
52 |
+
bg_imgs = cv2.resize(bg_imgs, (w, h))
|
53 |
+
# result = cv2.merge(result_planes)
|
54 |
+
result_norm = cv2.merge(result_norm_planes)
|
55 |
+
result_norm[result_norm == 0] = 1
|
56 |
+
shadow_map = np.clip(
|
57 |
+
img.astype(float) / result_norm.astype(float) * 255, 0, 255
|
58 |
+
).astype(np.uint8)
|
59 |
+
shadow_map = cv2.resize(shadow_map, (w, h))
|
60 |
+
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_BGR2GRAY)
|
61 |
+
shadow_map = cv2.cvtColor(shadow_map, cv2.COLOR_GRAY2BGR)
|
62 |
+
# return shadow_map
|
63 |
+
return bg_imgs
|
64 |
+
|
65 |
+
|
66 |
+
def deblur_prompt(img):
|
67 |
+
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
|
68 |
+
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
|
69 |
+
absX = cv2.convertScaleAbs(x) # 转回uint8
|
70 |
+
absY = cv2.convertScaleAbs(y)
|
71 |
+
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
72 |
+
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
|
73 |
+
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_GRAY2BGR)
|
74 |
+
return high_frequency
|
75 |
+
|
76 |
+
|
77 |
+
def appearance_prompt(img):
|
78 |
+
h, w = img.shape[:2]
|
79 |
+
# img = cv2.resize(img,(128,128))
|
80 |
+
img = cv2.resize(img, (1024, 1024))
|
81 |
+
rgb_planes = cv2.split(img)
|
82 |
+
result_planes = []
|
83 |
+
result_norm_planes = []
|
84 |
+
for plane in rgb_planes:
|
85 |
+
dilated_img = cv2.dilate(plane, np.ones((7, 7), np.uint8))
|
86 |
+
bg_img = cv2.medianBlur(dilated_img, 21)
|
87 |
+
diff_img = 255 - cv2.absdiff(plane, bg_img)
|
88 |
+
norm_img = cv2.normalize(
|
89 |
+
diff_img,
|
90 |
+
None,
|
91 |
+
alpha=0,
|
92 |
+
beta=255,
|
93 |
+
norm_type=cv2.NORM_MINMAX,
|
94 |
+
dtype=cv2.CV_8UC1,
|
95 |
+
)
|
96 |
+
result_planes.append(diff_img)
|
97 |
+
result_norm_planes.append(norm_img)
|
98 |
+
result_norm = cv2.merge(result_norm_planes)
|
99 |
+
result_norm = cv2.resize(result_norm, (w, h))
|
100 |
+
return result_norm
|
101 |
+
|
102 |
+
|
103 |
+
def binarization_promptv2(img):
|
104 |
+
result, thresh = utils.SauvolaModBinarization(img)
|
105 |
+
thresh = thresh.astype(np.uint8)
|
106 |
+
result[result > 155] = 255
|
107 |
+
result[result <= 155] = 0
|
108 |
+
|
109 |
+
x = cv2.Sobel(img, cv2.CV_16S, 1, 0)
|
110 |
+
y = cv2.Sobel(img, cv2.CV_16S, 0, 1)
|
111 |
+
absX = cv2.convertScaleAbs(x) # 转回uint8
|
112 |
+
absY = cv2.convertScaleAbs(y)
|
113 |
+
high_frequency = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
|
114 |
+
high_frequency = cv2.cvtColor(high_frequency, cv2.COLOR_BGR2GRAY)
|
115 |
+
return np.concatenate(
|
116 |
+
(
|
117 |
+
np.expand_dims(thresh, -1),
|
118 |
+
np.expand_dims(high_frequency, -1),
|
119 |
+
np.expand_dims(result, -1),
|
120 |
+
),
|
121 |
+
-1,
|
122 |
+
)
|
123 |
+
|
124 |
+
|
125 |
+
def dewarping(model, im_org):
|
126 |
+
INPUT_SIZE = 256
|
127 |
+
im_masked, prompt_org = dewarp_prompt(im_org.copy())
|
128 |
+
|
129 |
+
h, w = im_masked.shape[:2]
|
130 |
+
im_masked = im_masked.copy()
|
131 |
+
im_masked = cv2.resize(im_masked, (INPUT_SIZE, INPUT_SIZE))
|
132 |
+
im_masked = im_masked / 255.0
|
133 |
+
im_masked = torch.from_numpy(im_masked.transpose(2, 0, 1)).unsqueeze(0)
|
134 |
+
im_masked = im_masked.float().to(DEVICE)
|
135 |
+
|
136 |
+
prompt = torch.from_numpy(prompt_org.transpose(2, 0, 1)).unsqueeze(0)
|
137 |
+
prompt = prompt.float().to(DEVICE)
|
138 |
+
|
139 |
+
in_im = torch.cat((im_masked, prompt), dim=1)
|
140 |
+
|
141 |
+
# inference
|
142 |
+
base_coord = utils.getBasecoord(INPUT_SIZE, INPUT_SIZE) / INPUT_SIZE
|
143 |
+
model = model.float()
|
144 |
+
with torch.no_grad():
|
145 |
+
pred = model(in_im)
|
146 |
+
pred = pred[0][:2].permute(1, 2, 0).cpu().numpy()
|
147 |
+
pred = pred + base_coord
|
148 |
+
## smooth
|
149 |
+
for i in range(15):
|
150 |
+
pred = cv2.blur(pred, (3, 3), borderType=cv2.BORDER_REPLICATE)
|
151 |
+
pred = cv2.resize(pred, (w, h)) * (w, h)
|
152 |
+
pred = pred.astype(np.float32)
|
153 |
+
out_im = cv2.remap(im_org, pred[:, :, 0], pred[:, :, 1], cv2.INTER_LINEAR)
|
154 |
+
|
155 |
+
prompt_org = (prompt_org * 255).astype(np.uint8)
|
156 |
+
prompt_org = cv2.resize(prompt_org, im_org.shape[:2][::-1])
|
157 |
+
|
158 |
+
return prompt_org[:, :, 0], prompt_org[:, :, 1], prompt_org[:, :, 2], out_im
|
159 |
+
|
160 |
+
|
161 |
+
def appearance(model, im_org):
|
162 |
+
MAX_SIZE = 1600
|
163 |
+
# obtain im and prompt
|
164 |
+
h, w = im_org.shape[:2]
|
165 |
+
prompt = appearance_prompt(im_org)
|
166 |
+
in_im = np.concatenate((im_org, prompt), -1)
|
167 |
+
|
168 |
+
# constrain the max resolution
|
169 |
+
if max(w, h) < MAX_SIZE:
|
170 |
+
in_im, padding_h, padding_w = stride_integral(in_im, 8)
|
171 |
+
else:
|
172 |
+
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
|
173 |
+
|
174 |
+
# normalize
|
175 |
+
in_im = in_im / 255.0
|
176 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
177 |
+
|
178 |
+
# inference
|
179 |
+
in_im = in_im.half().to(DEVICE)
|
180 |
+
model = model.half()
|
181 |
+
with torch.no_grad():
|
182 |
+
pred = model(in_im)
|
183 |
+
pred = torch.clamp(pred, 0, 1)
|
184 |
+
pred = pred[0].permute(1, 2, 0).cpu().numpy()
|
185 |
+
pred = (pred * 255).astype(np.uint8)
|
186 |
+
|
187 |
+
if max(w, h) < MAX_SIZE:
|
188 |
+
out_im = pred[padding_h:, padding_w:]
|
189 |
+
else:
|
190 |
+
pred[pred == 0] = 1
|
191 |
+
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
|
192 |
+
float
|
193 |
+
) / pred.astype(float)
|
194 |
+
shadow_map = cv2.resize(shadow_map, (w, h))
|
195 |
+
shadow_map[shadow_map == 0] = 0.00001
|
196 |
+
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
|
197 |
+
|
198 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
199 |
+
|
200 |
+
|
201 |
+
def deshadowing(model, im_org):
|
202 |
+
MAX_SIZE = 1600
|
203 |
+
# obtain im and prompt
|
204 |
+
h, w = im_org.shape[:2]
|
205 |
+
prompt = deshadow_prompt(im_org)
|
206 |
+
in_im = np.concatenate((im_org, prompt), -1)
|
207 |
+
|
208 |
+
# constrain the max resolution
|
209 |
+
if max(w, h) < MAX_SIZE:
|
210 |
+
in_im, padding_h, padding_w = stride_integral(in_im, 8)
|
211 |
+
else:
|
212 |
+
in_im = cv2.resize(in_im, (MAX_SIZE, MAX_SIZE))
|
213 |
+
|
214 |
+
# normalize
|
215 |
+
in_im = in_im / 255.0
|
216 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
217 |
+
|
218 |
+
# inference
|
219 |
+
in_im = in_im.half().to(DEVICE)
|
220 |
+
model = model.half()
|
221 |
+
with torch.no_grad():
|
222 |
+
pred = model(in_im)
|
223 |
+
pred = torch.clamp(pred, 0, 1)
|
224 |
+
pred = pred[0].permute(1, 2, 0).cpu().numpy()
|
225 |
+
pred = (pred * 255).astype(np.uint8)
|
226 |
+
|
227 |
+
if max(w, h) < MAX_SIZE:
|
228 |
+
out_im = pred[padding_h:, padding_w:]
|
229 |
+
else:
|
230 |
+
pred[pred == 0] = 1
|
231 |
+
shadow_map = cv2.resize(im_org, (MAX_SIZE, MAX_SIZE)).astype(
|
232 |
+
float
|
233 |
+
) / pred.astype(float)
|
234 |
+
shadow_map = cv2.resize(shadow_map, (w, h))
|
235 |
+
shadow_map[shadow_map == 0] = 0.00001
|
236 |
+
out_im = np.clip(im_org.astype(float) / shadow_map, 0, 255).astype(np.uint8)
|
237 |
+
|
238 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
239 |
+
|
240 |
+
|
241 |
+
def deblurring(model, im_org):
|
242 |
+
# setup image
|
243 |
+
in_im, padding_h, padding_w = stride_integral(im_org, 8)
|
244 |
+
prompt = deblur_prompt(in_im)
|
245 |
+
in_im = np.concatenate((in_im, prompt), -1)
|
246 |
+
in_im = in_im / 255.0
|
247 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
248 |
+
in_im = in_im.half().to(DEVICE)
|
249 |
+
# inference
|
250 |
+
model.to(DEVICE)
|
251 |
+
model.eval()
|
252 |
+
model = model.half()
|
253 |
+
with torch.no_grad():
|
254 |
+
pred = model(in_im)
|
255 |
+
pred = torch.clamp(pred, 0, 1)
|
256 |
+
pred = pred[0].permute(1, 2, 0).cpu().numpy()
|
257 |
+
pred = (pred * 255).astype(np.uint8)
|
258 |
+
out_im = pred[padding_h:, padding_w:]
|
259 |
+
|
260 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
261 |
+
|
262 |
+
|
263 |
+
def binarization(model, im_org):
|
264 |
+
im, padding_h, padding_w = stride_integral(im_org, 8)
|
265 |
+
prompt = binarization_promptv2(im)
|
266 |
+
h, w = im.shape[:2]
|
267 |
+
in_im = np.concatenate((im, prompt), -1)
|
268 |
+
|
269 |
+
in_im = in_im / 255.0
|
270 |
+
in_im = torch.from_numpy(in_im.transpose(2, 0, 1)).unsqueeze(0)
|
271 |
+
in_im = in_im.to(DEVICE)
|
272 |
+
model = model.half()
|
273 |
+
in_im = in_im.half()
|
274 |
+
with torch.no_grad():
|
275 |
+
pred = model(in_im)
|
276 |
+
pred = pred[:, :2, :, :]
|
277 |
+
pred = torch.max(torch.softmax(pred, 1), 1)[1]
|
278 |
+
pred = pred[0].cpu().numpy()
|
279 |
+
pred = (pred * 255).astype(np.uint8)
|
280 |
+
pred = cv2.resize(pred, (w, h))
|
281 |
+
out_im = pred[padding_h:, padding_w:]
|
282 |
+
|
283 |
+
return prompt[:, :, 0], prompt[:, :, 1], prompt[:, :, 2], out_im
|
284 |
+
|
285 |
+
|
286 |
+
def model_init(model_path):
|
287 |
+
# prepare model
|
288 |
+
model = restormer_arch.Restormer(
|
289 |
+
inp_channels=6,
|
290 |
+
out_channels=3,
|
291 |
+
dim=48,
|
292 |
+
num_blocks=[2, 3, 3, 4],
|
293 |
+
num_refinement_blocks=4,
|
294 |
+
heads=[1, 2, 4, 8],
|
295 |
+
ffn_expansion_factor=2.66,
|
296 |
+
bias=False,
|
297 |
+
LayerNorm_type="WithBias",
|
298 |
+
dual_pixel_task=True,
|
299 |
+
)
|
300 |
+
|
301 |
+
if DEVICE == "cpu":
|
302 |
+
state = convert_state_dict(
|
303 |
+
torch.load(model_path, map_location="cpu")["model_state"]
|
304 |
+
)
|
305 |
+
else:
|
306 |
+
state = convert_state_dict(
|
307 |
+
torch.load(model_path, map_location="cuda:0")["model_state"]
|
308 |
+
)
|
309 |
+
model.load_state_dict(state)
|
310 |
+
|
311 |
+
model.eval()
|
312 |
+
model = model.to(DEVICE)
|
313 |
+
return model
|
314 |
+
|
315 |
+
|
316 |
+
def resize(image, max_size):
|
317 |
+
h, w = image.shape[:2]
|
318 |
+
if max(h, w) > max_size:
|
319 |
+
if h > w:
|
320 |
+
h_new = max_size
|
321 |
+
w_new = int(w * h_new / h)
|
322 |
+
else:
|
323 |
+
w_new = max_size
|
324 |
+
h_new = int(h * w_new / w)
|
325 |
+
pil_image = Image.fromarray(image)
|
326 |
+
pil_image = pil_image.resize((w_new, h_new), Image.Resampling.LANCZOS)
|
327 |
+
image = np.array(pil_image)
|
328 |
+
return image
|
329 |
+
|
330 |
+
|
331 |
+
def inference_one_image(model, image, tasks):
|
332 |
+
# image should be in BGR format
|
333 |
+
|
334 |
+
if "dewarping" in tasks:
|
335 |
+
*_, image = dewarping(model, image)
|
336 |
+
|
337 |
+
# if only dewarping return here
|
338 |
+
if len(tasks) == 1 and "dewarping" in tasks:
|
339 |
+
return image
|
340 |
+
|
341 |
+
image = resize(image, 1536)
|
342 |
+
|
343 |
+
if "deshadowing" in tasks:
|
344 |
+
*_, image = deshadowing(model, image)
|
345 |
+
if "appearance" in tasks:
|
346 |
+
*_, image = appearance(model, image)
|
347 |
+
if "deblurring" in tasks:
|
348 |
+
*_, image = deblurring(model, image)
|
349 |
+
if "binarization" in tasks:
|
350 |
+
*_, image = binarization(model, image)
|
351 |
+
|
352 |
+
return image
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python3-opencv
|