spliting major tom europe in smaller countries
Browse files
app.py
CHANGED
@@ -1,62 +1,59 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import os
|
4 |
-
import time
|
5 |
-
import psutil
|
6 |
-
from helper import (
|
7 |
load_dataset, search, get_file_paths,
|
8 |
get_cordinates, get_images_from_s3_to_display,
|
9 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
10 |
)
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
# Load environment variables
|
16 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
17 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
18 |
|
19 |
# Predefined list of datasets
|
20 |
-
datasets = ["WayveScenes", "MajorTom-
|
21 |
description = {
|
22 |
-
"
|
23 |
-
"
|
24 |
-
"MajorTom-Europe": "A geospatial dataset containing satellite imagery from across Europe."
|
25 |
}
|
26 |
selection = {
|
27 |
'WayveScenes': [1, 8],
|
28 |
-
"MajorTom-
|
29 |
}
|
30 |
-
|
|
|
|
|
|
|
31 |
# AWS S3 bucket name
|
32 |
bucket_name = "datasets-quasara-io"
|
33 |
|
34 |
-
# Function to
|
35 |
-
def
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
# Streamlit App
|
41 |
def main():
|
42 |
# Initialize session state variables if not already initialized
|
43 |
if 'search_in_small_objects' not in st.session_state:
|
44 |
st.session_state.search_in_small_objects = False
|
|
|
45 |
if 'dataset_number' not in st.session_state:
|
46 |
st.session_state.dataset_number = 1
|
|
|
47 |
if 'df' not in st.session_state:
|
48 |
st.session_state.df = None
|
49 |
|
50 |
st.title("Semantic Search and Image Display")
|
51 |
-
log_resource_usage("Initialization")
|
52 |
|
53 |
# Select dataset from dropdown
|
54 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
55 |
|
56 |
-
|
57 |
-
folder_path = ""
|
58 |
-
else:
|
59 |
-
folder_path = f'{dataset_name}/'
|
60 |
|
61 |
st.caption(description[dataset_name])
|
62 |
|
@@ -64,13 +61,15 @@ def main():
|
|
64 |
st.session_state.search_in_small_objects = True
|
65 |
st.text("Small Object Search Enabled")
|
66 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
|
|
|
67 |
else:
|
68 |
st.session_state.search_in_small_objects = False
|
69 |
st.text("Small Object Search Disabled")
|
70 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
|
|
|
71 |
|
72 |
-
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=
|
73 |
-
st.text(f'The smaller the dataset
|
74 |
|
75 |
# Load dataset with limit only if not already loaded
|
76 |
if st.button("Load Dataset"):
|
@@ -78,25 +77,32 @@ def main():
|
|
78 |
loading_dataset_text = st.empty()
|
79 |
loading_dataset_text.text("Loading Dataset...")
|
80 |
loading_dataset_bar = st.progress(0)
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
# Simulate dataset loading progress
|
83 |
for i in range(0, 100, 25):
|
84 |
-
time.sleep(0.2)
|
85 |
loading_dataset_bar.progress(i + 25)
|
86 |
|
87 |
-
|
88 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
|
|
|
|
89 |
st.session_state.df = df
|
90 |
-
|
91 |
loading_dataset_bar.progress(100)
|
92 |
loading_dataset_text.text("Dataset loaded successfully!")
|
93 |
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
94 |
-
|
95 |
-
|
|
|
|
|
96 |
except Exception as e:
|
97 |
-
logging.error(f"Failed to load dataset: {e}")
|
98 |
st.error(f"Failed to load dataset: {e}")
|
99 |
-
|
|
|
100 |
# Input search query
|
101 |
query = st.text_input("Enter your search query")
|
102 |
|
@@ -110,23 +116,25 @@ def main():
|
|
110 |
st.warning("Please enter a search query.")
|
111 |
else:
|
112 |
try:
|
|
|
113 |
search_loading_text = st.empty()
|
114 |
search_loading_text.text("Searching...")
|
115 |
search_progress_bar = st.progress(0)
|
116 |
|
117 |
-
|
118 |
df = st.session_state.df
|
119 |
if st.session_state.search_in_small_objects:
|
120 |
results = search(query, df, limit)
|
121 |
top_k_paths = get_file_paths(df, results)
|
122 |
top_k_cordinates = get_cordinates(df, results)
|
123 |
else:
|
|
|
124 |
results = search(query, df, limit)
|
125 |
top_k_paths = get_file_paths(df, results)
|
126 |
|
|
|
127 |
search_progress_bar.progress(100)
|
128 |
search_loading_text.text("Search completed!")
|
129 |
-
log_resource_usage("After Search")
|
130 |
|
131 |
# Load Images with Bounding Boxes if applicable
|
132 |
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
@@ -134,11 +142,14 @@ def main():
|
|
134 |
elif not st.session_state.search_in_small_objects and top_k_paths:
|
135 |
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
|
136 |
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
|
|
137 |
else:
|
138 |
st.write("No results found.")
|
139 |
|
|
|
|
|
|
|
140 |
except Exception as e:
|
141 |
-
logging.error(f"Search failed: {e}")
|
142 |
st.error(f"Search failed: {e}")
|
143 |
|
144 |
if __name__ == "__main__":
|
|
|
1 |
import streamlit as st
|
2 |
+
from helper3 import (
|
|
|
|
|
|
|
|
|
3 |
load_dataset, search, get_file_paths,
|
4 |
get_cordinates, get_images_from_s3_to_display,
|
5 |
get_images_with_bounding_boxes_from_s3, load_dataset_with_limit
|
6 |
)
|
7 |
+
import os
|
8 |
+
import time
|
9 |
+
import psutil
|
10 |
+
from memory_profiler import memory_usage
|
11 |
|
12 |
# Load environment variables
|
13 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
14 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
15 |
|
16 |
# Predefined list of datasets
|
17 |
+
datasets = ["WayveScenes", "MajorTom-Germany"]
|
18 |
description = {
|
19 |
+
"WayveScenes": "A large-scale dataset featuring diverse urban driving scenes, captured from autonomous vehicles to advance AI perception and navigation in complex environments.",
|
20 |
+
"MajorTom-Germany": "A geospatial dataset containing satellite imagery from across Germany, designed for tasks like land-use classification, environmental monitoring, and earth observation analytics."
|
|
|
21 |
}
|
22 |
selection = {
|
23 |
'WayveScenes': [1, 8],
|
24 |
+
"MajorTom-Germany": [1, 1]
|
25 |
}
|
26 |
+
folder_path_dict = {
|
27 |
+
"WayveScenes" : 'WayveScenes/',
|
28 |
+
"MajorTom-Germany": "MajorTom-Europe/"
|
29 |
+
}
|
30 |
# AWS S3 bucket name
|
31 |
bucket_name = "datasets-quasara-io"
|
32 |
|
33 |
+
# Function to display CPU and memory usage
|
34 |
+
def display_usage():
|
35 |
+
process = psutil.Process(os.getpid())
|
36 |
+
st.write(f"CPU usage: {process.cpu_percent()}%")
|
37 |
+
st.write(f"Memory usage: {process.memory_info().rss / (1024 ** 2)} MB")
|
38 |
|
39 |
# Streamlit App
|
40 |
def main():
|
41 |
# Initialize session state variables if not already initialized
|
42 |
if 'search_in_small_objects' not in st.session_state:
|
43 |
st.session_state.search_in_small_objects = False
|
44 |
+
|
45 |
if 'dataset_number' not in st.session_state:
|
46 |
st.session_state.dataset_number = 1
|
47 |
+
|
48 |
if 'df' not in st.session_state:
|
49 |
st.session_state.df = None
|
50 |
|
51 |
st.title("Semantic Search and Image Display")
|
|
|
52 |
|
53 |
# Select dataset from dropdown
|
54 |
dataset_name = st.selectbox("Select Dataset", datasets)
|
55 |
|
56 |
+
folder_path = folder_path_dict[dataset_name]
|
|
|
|
|
|
|
57 |
|
58 |
st.caption(description[dataset_name])
|
59 |
|
|
|
61 |
st.session_state.search_in_small_objects = True
|
62 |
st.text("Small Object Search Enabled")
|
63 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][1] + 1)))
|
64 |
+
st.text(f"You have selected Split Dataset {st.session_state.dataset_number}")
|
65 |
else:
|
66 |
st.session_state.search_in_small_objects = False
|
67 |
st.text("Small Object Search Disabled")
|
68 |
st.session_state.dataset_number = st.selectbox("Select Subset of Data", list(range(1, selection[dataset_name][0] + 1)))
|
69 |
+
st.text(f"You have selected Main Dataset {st.session_state.dataset_number}")
|
70 |
|
71 |
+
dataset_limit = st.slider("Size of Dataset to be searched from", min_value=1000, max_value=30000, value=10000)
|
72 |
+
st.text(f'The smaller the dataset the faster the search will work.')
|
73 |
|
74 |
# Load dataset with limit only if not already loaded
|
75 |
if st.button("Load Dataset"):
|
|
|
77 |
loading_dataset_text = st.empty()
|
78 |
loading_dataset_text.text("Loading Dataset...")
|
79 |
loading_dataset_bar = st.progress(0)
|
80 |
+
|
81 |
+
# Memory profiling
|
82 |
+
mem_usage = memory_usage((load_dataset_with_limit, (dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects), {"limit": dataset_limit}))
|
83 |
+
st.write(f"Memory used for loading the dataset: {mem_usage[-1]:.2f} MB")
|
84 |
+
|
85 |
# Simulate dataset loading progress
|
86 |
for i in range(0, 100, 25):
|
87 |
+
time.sleep(0.2) # Simulate work being done
|
88 |
loading_dataset_bar.progress(i + 25)
|
89 |
|
90 |
+
# Load dataset and monitor CPU and memory
|
91 |
df, total_rows = load_dataset_with_limit(dataset_name, st.session_state.dataset_number, st.session_state.search_in_small_objects, limit=dataset_limit)
|
92 |
+
|
93 |
+
# Store loaded dataset in session state
|
94 |
st.session_state.df = df
|
|
|
95 |
loading_dataset_bar.progress(100)
|
96 |
loading_dataset_text.text("Dataset loaded successfully!")
|
97 |
st.success(f"Dataset loaded successfully with {len(df)} rows.")
|
98 |
+
|
99 |
+
# Display CPU and memory usage
|
100 |
+
display_usage()
|
101 |
+
|
102 |
except Exception as e:
|
|
|
103 |
st.error(f"Failed to load dataset: {e}")
|
104 |
+
|
105 |
+
|
106 |
# Input search query
|
107 |
query = st.text_input("Enter your search query")
|
108 |
|
|
|
116 |
st.warning("Please enter a search query.")
|
117 |
else:
|
118 |
try:
|
119 |
+
# Progress bar for search
|
120 |
search_loading_text = st.empty()
|
121 |
search_loading_text.text("Searching...")
|
122 |
search_progress_bar = st.progress(0)
|
123 |
|
124 |
+
# Perform search on the loaded dataset from session state
|
125 |
df = st.session_state.df
|
126 |
if st.session_state.search_in_small_objects:
|
127 |
results = search(query, df, limit)
|
128 |
top_k_paths = get_file_paths(df, results)
|
129 |
top_k_cordinates = get_cordinates(df, results)
|
130 |
else:
|
131 |
+
# Normal Search
|
132 |
results = search(query, df, limit)
|
133 |
top_k_paths = get_file_paths(df, results)
|
134 |
|
135 |
+
# Complete the search progress
|
136 |
search_progress_bar.progress(100)
|
137 |
search_loading_text.text("Search completed!")
|
|
|
138 |
|
139 |
# Load Images with Bounding Boxes if applicable
|
140 |
if st.session_state.search_in_small_objects and top_k_paths and top_k_cordinates:
|
|
|
142 |
elif not st.session_state.search_in_small_objects and top_k_paths:
|
143 |
st.write(f"Displaying top {len(top_k_paths)} results for query '{query}':")
|
144 |
get_images_from_s3_to_display(bucket_name, top_k_paths, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, folder_path)
|
145 |
+
|
146 |
else:
|
147 |
st.write("No results found.")
|
148 |
|
149 |
+
# Display CPU and memory usage
|
150 |
+
display_usage()
|
151 |
+
|
152 |
except Exception as e:
|
|
|
153 |
st.error(f"Search failed: {e}")
|
154 |
|
155 |
if __name__ == "__main__":
|