from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer import torch from PIL import Image from PIL import Image from transformers import AutoProcessor, BlipForQuestionAnswering import torch from models import load_transformers class vit_gpt2: device = "cuda" if torch.cuda.is_available() else "cpu" max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def __init__(self, model_pretrain:str = "nlpconnect/vit-gpt2-image-captioning"): self.model = VisionEncoderDecoderModel.from_pretrained(model_pretrain , device_map={"": 0}, torch_dtype=torch.float16) self.feature_extractor = ViTImageProcessor.from_pretrained(model_pretrain) self.tokenizer = AutoTokenizer.from_pretrained(model_pretrain) def image_captioning(self, image: Image.Image) -> str: pixel_values = self.feature_extractor(images=[image], return_tensors="pt").pixel_values pixel_values = pixel_values.to(self.device) output_ids = self.model.generate(pixel_values, **self.gen_kwargs) preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) return preds[0] def visual_question_answering(self, image: Image.Image, prompt: str) -> str: inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device, torch.float16) generated_ids = self.model.generate(**inputs) generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return generated_text