# Copyright 2023 DAMO Academy and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import gc import json import math import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer from .configuration_mplug_owl2 import MPLUGOwl2Config, MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig from .modeling_mplug_owl2 import MPLUGOwl2LlamaForCausalLM try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) LlamaTokenizerFast = None """ Sample usage: ``` python3 /pure-mlo-scratch/sfan/model-parallel-trainer/llama2megatron/convert_llama2hf.py \ --input_dir /pure-mlo-scratch/llama/ --model_size 7 --output_dir /pure-mlo-scratch/llama/converted_HF_7B ``` Thereafter, models can be loaded via: ```py from transformers import LlamaForCausalLM, LlamaTokenizer model = LlamaForCausalLM.from_pretrained("/output/path") tokenizer = LlamaTokenizer.from_pretrained("/output/path") ``` Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM). """ llama_s2layer = {7: 32, 13: 40, 30: 60, 65: 80, 70: 80} llama_s2heads = {7: 32, 13: 40, 30: 52, 65: 64, 70: 64} llama_s2dense = {7: 11008, 13: 13824, 30: 17920, 65: 22016, 70: 28672} # should be (2/3)*4*d, but it isn't exaclty that llama_s2hidden = {7: 4096, 13: 5120, 32: 6656, 65: 8192, 70: 8192} def compute_intermediate_size(n): return int(math.ceil(n * 8 / 3) + 255) // 256 * 256 def read_json(path): with open(path, "r") as f: return json.load(f) def write_json(text, path): with open(path, "w") as f: json.dump(text, f) def write_model(model_path, input_base_path, model_size, num_input_shards=1, num_output_shards=2, skip_permute=True, norm_eps=1e-05): # if os.path.exists(model_path): # shutil.rmtree(model_path) os.makedirs(model_path, exist_ok=True) # tmp_model_path = os.path.join(model_path, "tmp") tmp_model_path = model_path os.makedirs(tmp_model_path, exist_ok=True) num_shards = num_input_shards n_layers = llama_s2layer[model_size] n_heads = llama_s2heads[model_size] n_heads_per_shard = n_heads // num_shards n_dense = llama_s2dense[model_size] n_hidden = llama_s2hidden[model_size] hidden_per_head = n_hidden // n_heads base = 10000.0 inv_freq = 1.0 / (base ** (torch.arange(0, hidden_per_head, 2).float() / hidden_per_head)) # permute for sliced rotary def permute(w, skip_permute=skip_permute): if skip_permute: return w return w.view(n_heads, n_hidden // n_heads // 2, 2, n_hidden).transpose(1, 2).reshape(n_hidden, n_hidden) print(f"Fetching all parameters from the checkpoint at {input_base_path}.") # Load weights if num_shards==1: # Not sharded # (The sharded implementation would also work, but this is simpler.) # /pure-mlo-scratch/alhernan/megatron-data/checkpoints/llama2-7b-tp4-pp1-optim/release/mp_rank_00/model_optim_rng.pt if os.path.exists(os.path.join(input_base_path, 'release')): filename = os.path.join(input_base_path, 'release', 'mp_rank_00', 'model_optim_rng.pt') elif input_base_path.split('/')[-1].startswith('iter_'): iteration = eval(input_base_path.split('/')[-1].replace('iter_', '').lstrip('0')) load_dir = '/'.join(input_base_path.split('/')[:-1]) filename = os.path.join(input_base_path, 'mp_rank_00', 'model_optim_rng.pt') if not os.path.exists(filename): filename = filename.replace('model_optim_rng.pt', 'model_rng.pt') else: tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt') with open(tracker_filename, 'r') as f: metastring = f.read().strip() iteration = 'iter_{:07d}'.format(int(metastring)) filename = os.path.join(input_base_path, iteration, 'mp_rank_00', 'model_optim_rng.pt') if not os.path.exists(filename): filename = filename.replace('model_optim_rng.pt', 'model_rng.pt') original_filename = filename loaded = torch.load(filename, map_location="cpu")['model']['language_model'] else: # Sharded filenames = [] for i in range(num_shards): if os.path.exists(os.path.join(input_base_path, 'release')): filename = os.path.join(input_base_path, 'release', f'mp_rank_{i:02d}', 'model_optim_rng.pt') else: tracker_filename = os.path.join(input_base_path, 'latest_checkpointed_iteration.txt') with open(tracker_filename, 'r') as f: metastring = f.read().strip() iteration = 'iter_{:07d}'.format(int(metastring)) filename = os.path.join(input_base_path, iteration, f'mp_rank_{i:02d}', 'model_optim_rng.pt') if not os.path.exists(filename): filename = filename.replace('model_optim_rng.pt', 'model_rng.pt') filenames.append(filename) loaded = [ torch.load(filenames[i], map_location="cpu")['model']['language_model'] for i in range(num_shards) ] print('Llama-Megatron Loaded!') param_count = 0 index_dict = {"weight_map": {}} print(f'Weighted Converting for {n_layers} layers...') for layer_i in range(n_layers): print(layer_i) filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if num_shards == 1: # Unsharded state_dict = { f"model.layers.{layer_i}.self_attn.q_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.q_proj.weight"], f"model.layers.{layer_i}.self_attn.k_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.0.weight"], f"model.layers.{layer_i}.self_attn.v_proj.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.0.weight"], f"model.layers.{layer_i}.self_attn.k_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.1.weight"], f"model.layers.{layer_i}.self_attn.v_proj.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.1.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded['encoder'][f"layers.{layer_i}.self_attention.o_proj.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.gate_proj.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.down_proj.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded['encoder'][f"layers.{layer_i}.mlp.up_proj.weight"], f"model.layers.{layer_i}.input_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.0.weight"], f"model.layers.{layer_i}.post_attention_layernorm.multiway.0.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.0.weight"], f"model.layers.{layer_i}.input_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.input_layernorm.multiway.1.weight"], f"model.layers.{layer_i}.post_attention_layernorm.multiway.1.weight": loaded['encoder'][f"layers.{layer_i}.post_attention_layernorm.multiway.1.weight"], } else: raise NotImplemented # else: # # Sharded # # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. # state_dict = { # f"model.layers.{layer_i}.input_layernorm.weight": loaded[0]['encoder'][ # f"layers.{layer_i}.input_layernorm.multiway.0.weight" # ].clone(), # f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0]['encoder'][ # f"layers.{layer_i}.post_attention_layernorm.multiway.0.weight" # ].clone(), # } # wqs, wks, wvs, ffn_w1s, ffn_w3s = [], [], [], [], [] # for shard_idx in range(num_shards): # wqs.append(loaded[shard_idx]['encoder'][f"layers.{layer_i}.self_attention.q_proj.weight"]) # wks.append(loaded[shard_idx]['encoder'][f"layers.{layer_i}.self_attention.k_proj.multiway.0.weight"]) # wvs.append(loaded[shard_idx]['encoder'][f"layers.{layer_i}.self_attention.v_proj.multiway.0.weight"]) # state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute( # torch.cat( # [ # wq.view(n_heads_per_shard, hidden_per_head, n_hidden) # for wq in range(wqs) # ], # dim=0, # ).reshape(n_hidden, n_hidden) # ) # state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute( # torch.cat( # [ # wk.view(n_heads_per_shard, hidden_per_head, n_hidden) # for wk in range(wks) # ], # dim=0, # ).reshape(n_hidden, n_hidden) # ) # state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( # [ # wv.view(n_heads_per_shard, hidden_per_head, n_hidden) # for wv in range(wvs) # ], # dim=0, # ).reshape(n_hidden, n_hidden) # state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( # [loaded[i]['encoder'][f"layers.{layer_i}.self_attention.o_proj.weight"] for i in range(num_shards)], dim=1 # ) # state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat( # [loaded[i]['encoder'][f"layers.{layer_i}.mlp.gate_proj.weight"] for i in range(num_shards)], dim=0 # ) # state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat( # [loaded[i]['encoder'][f"layers.{layer_i}.mlp.down_proj.weight"] for i in range(num_shards)], dim=1 # ) # state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat( # [loaded[i]['encoder'][f"layers.{layer_i}.mlp.up_proj.weight"] for i in range(num_shards)], dim=0 # ) state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) print(f'Sharded file saved to {filename}') filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if num_shards==1: # Unsharded state_dict = { "model.embed_tokens.weight": loaded['embedding']['word_embeddings']['weight'], "model.norm.weight": loaded['encoder']['norm.weight'], "lm_head.weight": loaded['encoder']['lm_head.weight'], } else: state_dict = { "model.embed_tokens.weight": loaded[0]['embedding']['word_embeddings']['weight'], "model.norm.weight": loaded[0]['encoder']['norm.weight'], "lm_head.weight": loaded[0]['encoder']['lm_head.weight'], } loaded_all = torch.load(original_filename, map_location="cpu")['model'] # Vision Part state_dict.update({ "model.vision_model.embeddings.cls_token": loaded_all['vision_model']['cls_token'], "model.vision_model.embeddings.patch_embed.weight": loaded_all['vision_model']['patch_embed']['weight'], "model.vision_model.embeddings.position_embedding": loaded_all['vision_model']['position_embeddings'], "model.vision_model.embeddings.pre_layernorm.bias": loaded_all['vision_model']['pre_layernorm']['bias'], "model.vision_model.embeddings.pre_layernorm.weight": loaded_all['vision_model']['pre_layernorm']['weight'], "model.vision_model.post_layernorm.bias": loaded_all['vision_model']['transformer']['final_layernorm.bias'], "model.vision_model.post_layernorm.weight": loaded_all['vision_model']['transformer']['final_layernorm.weight'], }) for v_layer_idx in range(24): state_dict.update({ f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.bias'], f"model.vision_model.encoder.layers.{v_layer_idx}.input_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.input_layernorm.weight'], f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.bias'], f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc1.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_h_to_4h.weight'], f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.bias'], f"model.vision_model.encoder.layers.{v_layer_idx}.mlp.fc2.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.mlp.dense_4h_to_h.weight'], f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.bias'], f"model.vision_model.encoder.layers.{v_layer_idx}.post_attention_layernorm.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.post_attention_layernorm.weight'], f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.bias'], f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.dense.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.dense.weight'], f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.bias": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.bias'], f"model.vision_model.encoder.layers.{v_layer_idx}.self_attn.query_key_value.weight": loaded_all['vision_model']['transformer'][f'layers.{v_layer_idx}.self_attention.query_key_value.weight'], }) # Abstractor Part state_dict.update({ "model.visual_abstractor.query_embeds": loaded_all['vision_abstractor']['learnable_queries'], "model.visual_abstractor.visual_fc.bias": loaded_all['vision_abstractor']['visual_fc']['bias'], "model.visual_abstractor.visual_fc.weight": loaded_all['vision_abstractor']['visual_fc']['weight'], "model.visual_abstractor.vit_eos": loaded_all['vision_abstractor']['vit_eos'], }) for v_layer_idx in range(6): state_dict.update({ # f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.k_pos_embed": f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.key.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.k_proj.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.key.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.k_proj.weight"], # f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.q_pos_embed": "pytorch_model-00004-of-00004.bin", f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.query.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.q_proj.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.query.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.q_proj.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.value.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.v_proj.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.attention.value.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.v_proj.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.norm1.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm1.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.norm1.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm1.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.normk.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.normk.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.normk.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.normk.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.ffn_ln.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.ffn_ln.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.ffn_ln.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.ffn_ln.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w1.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w1.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w1.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w1.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w2.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w2.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w2.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w2.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w3.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w3.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.mlp.w3.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.mlp.w3.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.norm2.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm2.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.norm2.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.norm2.weight"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.out_proj.bias": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.o_proj.bias"], f"model.visual_abstractor.encoder.layers.{v_layer_idx}.crossattention.output.out_proj.weight": loaded_all['vision_abstractor']['transformer'][f"layers.{v_layer_idx}.self_attention.o_proj.weight"], }) for k, v in state_dict.items(): index_dict["weight_map"][k] = filename param_count += v.numel() torch.save(state_dict, os.path.join(tmp_model_path, filename)) # Write configs index_dict["metadata"] = {"total_size": param_count * 2} write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json")) config = MPLUGOwl2Config() config.save_pretrained(tmp_model_path) # Make space so we can load the model properly now. del state_dict del loaded del loaded_all gc.collect() def write_tokenizer(tokenizer_path, input_tokenizer_path): # Initialize the tokenizer based on the `spm` model tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.") tokenizer = tokenizer_class(input_tokenizer_path) tokenizer.save_pretrained(tokenizer_path) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA_Megatron weights", ) parser.add_argument( "--model_size", type=int, default=7, choices=[7, 13, 30, 65, 70], ) parser.add_argument( "--num_input_shards", type=int, default=1, ) parser.add_argument( "--num_output_shards", type=int, default=1, ) parser.add_argument('--skip_permute', action='store_true') parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) args = parser.parse_args() write_model( model_path=args.output_dir, input_base_path=args.input_dir, model_size=args.model_size, num_input_shards=args.num_input_shards, num_output_shards=args.num_output_shards, skip_permute=args.skip_permute ) if __name__ == "__main__": main()