import os import torch from PIL import Image from torchvision import transforms import gradio as gr model = torch.hub.load('pytorch/vision:v0.9.0', 'googlenet', pretrained=True) model.eval() torch.hub.download_url_to_file("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg") # sample execution (requires torchvision) def inference(input_image): preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_tensor = preprocess(input_image) input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model # move the input and model to GPU for speed if available if torch.cuda.is_available(): input_batch = input_batch.to('cuda') model.to('cuda') with torch.no_grad(): output = model(input_batch) # The output has unnormalized scores. To get probabilities, you can run a softmax on it. probabilities = torch.nn.functional.softmax(output[0], dim=0) # Download ImageNet labels os.system("wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Show top categories per image top5_prob, top5_catid = torch.topk(probabilities, 5) result = {} for i in range(top5_prob.size(0)): result[categories[top5_catid[i]]] = top5_prob[i].item() return result inputs = gr.inputs.Image(type='pil') outputs = gr.outputs.Label(type="confidences",num_top_classes=5) title = "GOOGLENET" description = "Gradio demo for GOOGLENET, GoogLeNet was based on a deep convolutional neural network architecture codenamed Inception which won ImageNet 2014. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." article = "
" examples = [ ['dog.jpg'] ] gr.Interface(inference, inputs, outputs, title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()