|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
import json |
|
import numpy as np |
|
import cv2 |
|
|
|
|
|
week8_model = torch.hub.load( |
|
'./', 'custom', path='Weights/Week_8.pt', source='local') |
|
week9_model = torch.hub.load( |
|
'./', 'custom', path='Weights/Week_9.pt', source='local') |
|
|
|
|
|
def draw_own_bbox(img, x1, y1, x2, y2, label, color=(36, 255, 12), text_color=(0, 0, 0)): |
|
""" |
|
Draw bounding box on the image with text label and save both the raw and annotated image in the 'own_results' folder |
|
|
|
Inputs |
|
------ |
|
img: numpy.ndarray - image on which the bounding box is to be drawn |
|
|
|
x1: int - x coordinate of the top left corner of the bounding box |
|
|
|
y1: int - y coordinate of the top left corner of the bounding box |
|
|
|
x2: int - x coordinate of the bottom right corner of the bounding box |
|
|
|
y2: int - y coordinate of the bottom right corner of the bounding box |
|
|
|
label: str - label to be written on the bounding box |
|
|
|
color: tuple - color of the bounding box |
|
|
|
text_color: tuple - color of the text label |
|
|
|
Returns |
|
------- |
|
None |
|
|
|
""" |
|
name_to_id = { |
|
"NA": 'NA', |
|
"Bullseye": 10, |
|
"One": 11, |
|
"Two": 12, |
|
"Three": 13, |
|
"Four": 14, |
|
"Five": 15, |
|
"Six": 16, |
|
"Seven": 17, |
|
"Eight": 18, |
|
"Nine": 19, |
|
"A": 20, |
|
"B": 21, |
|
"C": 22, |
|
"D": 23, |
|
"E": 24, |
|
"F": 25, |
|
"G": 26, |
|
"H": 27, |
|
"S": 28, |
|
"T": 29, |
|
"U": 30, |
|
"V": 31, |
|
"W": 32, |
|
"X": 33, |
|
"Y": 34, |
|
"Z": 35, |
|
"Up": 36, |
|
"Down": 37, |
|
"Right": 38, |
|
"Left": 39, |
|
"Up Arrow": 36, |
|
"Down Arrow": 37, |
|
"Right Arrow": 38, |
|
"Left Arrow": 39, |
|
"Stop": 40 |
|
} |
|
|
|
label = label + "-" + str(name_to_id[label]) |
|
|
|
x1 = int(x1) |
|
x2 = int(x2) |
|
y1 = int(y1) |
|
y2 = int(y2) |
|
|
|
img = cv2.rectangle(img, (x1, y1), (x2, y2), color, 2) |
|
|
|
(w, h), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1) |
|
|
|
img = cv2.rectangle(img, (x1, y1 - 20), (x1 + w, y1), color, -1) |
|
img = cv2.putText(img, label, (x1, y1 - 5), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.6, text_color, 1) |
|
return img |
|
|
|
|
|
def yolo(img, model, toggles, signal): |
|
""" |
|
Run YOLOv5 on the image and return the results |
|
|
|
Inputs |
|
------ |
|
img: numpy.ndarray - image on which the YOLOv5 model is to be run |
|
model: str - name of the model to be used |
|
toggles: dict - dictionary containing the toggles for the model |
|
signal: str - signal for position heuristic |
|
|
|
Returns |
|
------- |
|
output_image: PIL.Image - image with bounding boxes drawn on it |
|
original_results: json - json containing the original results |
|
filtered_image: PIL.Image - image with bounding boxes drawn on it after filtering |
|
filtered_results: json - json containing the filtered results |
|
""" |
|
|
|
if model == "Week 8": |
|
model = week8_model |
|
else: |
|
model = week9_model |
|
|
|
|
|
results = model(img) |
|
|
|
|
|
original_results = json.loads( |
|
results.pandas().xyxy[0].to_json(orient="records")) |
|
output_image = Image.fromarray(results.render()[0]) |
|
|
|
|
|
df_results = results.pandas().xyxy[0] |
|
df_results['bboxHt'] = df_results['ymax'] - df_results['ymin'] |
|
df_results['bboxWt'] = df_results['xmax'] - df_results['xmin'] |
|
df_results['bboxArea'] = df_results['bboxHt'] * df_results['bboxWt'] |
|
|
|
|
|
df_results = df_results.sort_values('bboxArea', ascending=False) |
|
|
|
|
|
pred_list = df_results |
|
if 'Ignore Bullseye' in toggles: |
|
pred_list = pred_list[pred_list['name'] != 'Bullseye'] |
|
|
|
|
|
if len(pred_list) == 0: |
|
return [output_image, original_results, output_image, original_results] |
|
|
|
elif len(pred_list) == 1: |
|
pred = pred_list.iloc[0] |
|
|
|
else: |
|
pred_shortlist = [] |
|
current_area = pred_list.iloc[0]['bboxArea'] |
|
|
|
|
|
for _, row in pred_list.iterrows(): |
|
if row['confidence'] > 0.5 and ((current_area * 0.8 <= row['bboxArea']) or (row['name'] == 'One' and current_area * 0.6 <= row['bboxArea'])): |
|
|
|
pred_shortlist.append(row) |
|
|
|
current_area = row['bboxArea'] |
|
|
|
|
|
if len(pred_shortlist) == 1: |
|
|
|
pred = pred_shortlist[0] |
|
|
|
|
|
else: |
|
|
|
|
|
|
|
pred_shortlist.sort(key=lambda x: x['xmin']) |
|
|
|
|
|
if signal == 'L': |
|
pred = pred_shortlist[0] |
|
|
|
|
|
elif signal == 'R': |
|
pred = pred_shortlist[-1] |
|
|
|
|
|
else: |
|
|
|
for i in range(len(pred_shortlist)): |
|
|
|
if pred_shortlist[i]['xmin'] > 250 and pred_shortlist[i]['xmin'] < 774: |
|
pred = pred_shortlist[i] |
|
break |
|
|
|
|
|
if isinstance(pred, str): |
|
|
|
pred_shortlist.sort(key=lambda x: x['bboxArea']) |
|
pred = pred_shortlist[-1] |
|
|
|
filtered_img = draw_own_bbox(np.array( |
|
img), pred['xmin'], pred['ymin'], pred['xmax'], pred['ymax'], pred['name']) |
|
return [output_image, original_results, filtered_img, json.loads(pred.to_json(orient="records"))] |
|
|
|
|
|
inputs = [gr.inputs.Image(type='pil', label="Original Image"), |
|
gr.inputs.Radio(['Week 8', 'Week 9'], type="value", |
|
default='Week 8', label='Model Selection'), |
|
gr.CheckboxGroup(["Ignore Bullseye", "Biggest BBox Only and Position-Based Heuristics",], value=[ |
|
"Ignore Bullseye", "Biggest BBox Only and Position-Based Heuristics"], label="Heuristic Toggles"), |
|
gr.inputs.Radio(['Left', 'Center', 'Right', 'Disabled'], |
|
type="value", default='Center', label='Position Heuristic'), |
|
] |
|
outputs = [gr.outputs.Image(type="pil", label="Output Image"), |
|
gr.outputs.JSON(label="Output JSON"), |
|
gr.outputs.Image(type="pil", label="Filtered Output Image"), |
|
gr.outputs.JSON(label="Filtered Output JSON") |
|
] |
|
|
|
examples = [['Examples/One.jpg'], ['Examples/Two.jpg'], ['Examples/Three.jpg'], ['Examples/1.jpg'], ['Examples/2.jpg'], ['Examples/3.jpg'], ['Examples/4.jpg'], ['Examples/5.jpg'], ['Examples/6.jpg'], |
|
['Examples/7.jpg'], ['Examples/8.jpg'], ['Examples/9.jpg'], ['Examples/10.jpg'], ['Examples/11.jpg'], ['Examples/12.jpg']] |
|
|
|
|
|
with gr.Blocks(css="#custom_header {min-height: 2rem; text-align: center} #custom_title {min-height: 2rem}") as demo: |
|
gr.Markdown("# YOLOv5 Symbol Recognition for CZ3004/SC2079 Multi-Disciplinary Project", |
|
elem_id="custom_header") |
|
gr.Markdown("Gradio Demo for YOLOv5 Symbol Recognition for CZ3004 Multi-Disciplinary Project. To use it, simply upload your image, or click one of the examples to load them. CZ3004 is a module in Nanyang Technological University's Computer Science curriculum that involves creating a robot car that can navigate within an arena and around obstacles. Part of the assessment is to go to obstacles and detect alphanumeric symbols pasted on them.", elem_id="custom_title") |
|
gr.Markdown("The two models available, Week 8 and Week 9, are for different subtasks. Week 8 model (as assessment was done in Week 8 of the school semester), \ |
|
is able to detect all symbols seen in the first three example images below. Week 9 model is limited to just the bullseye, left and right arrow symbols. \ |
|
Additionally, Week 9 model has been further trained on extreme edge cases where there is harsh sunlight behind the symbol/obstacle (seen in some of the examples).", elem_id="custom_title") |
|
gr.Markdown("Heuristics used are based on AY22-23 Semester 2's edition of MDP. These include ignoring the bullseye symbol, taking only the biggest bounding box, and filtering similar sized detections by the expected position of the symbol based on where the robot is supposed to be relative to the symbol.", elem_id="custom_title") |
|
gr.Markdown("This demo is part of a guide that is currently work-in-progress, for future CZ3004/SC2079 students to refer to. On a local environment, inference should be around 100ms at worst, and can be made faster with a GPU and/or conversion to a more optimized model format.", elem_id="custom_title") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Box(): |
|
gr.Markdown("## Inputs", elem_id="custom_header") |
|
input_image = gr.inputs.Image( |
|
type='pil', label="Original Image") |
|
btn = gr.Button(value="Submit") |
|
btn.style(full_width=True) |
|
with gr.Column(): |
|
with gr.Box(): |
|
gr.Markdown("## Parameters", elem_id="custom_header") |
|
model_selection = gr.inputs.Radio( |
|
['Week 8', 'Week 9'], type="value", default='Week 8', label='Model Selection') |
|
toggles = gr.CheckboxGroup(["Ignore Bullseye", "Biggest BBox Only and Position-Based Heuristics",], value=[ |
|
"Ignore Bullseye", "Biggest BBox Only and Position-Based Heuristics"], label="Heuristic Toggles") |
|
radios = gr.inputs.Radio(['Left', 'Center', 'Right', 'Disabled'], |
|
type="value", default='Center', label='Position Heuristic') |
|
with gr.Row(): |
|
with gr.Box(): |
|
with gr.Column(): |
|
gr.Markdown("## Raw Outputs", elem_id="custom_header") |
|
output_image = gr.outputs.Image( |
|
type="pil", label="Output Image") |
|
output_json = gr.outputs.JSON(label="Output JSON") |
|
with gr.Box(): |
|
with gr.Column(): |
|
gr.Markdown("## Filtered Outputs", elem_id="custom_header") |
|
filtered_image = gr.outputs.Image( |
|
type="pil", label="Filtered Output Image") |
|
filtered_json = gr.outputs.JSON(label="Filtered Output JSON") |
|
with gr.Row(): |
|
gr.Examples(examples=examples, |
|
inputs=input_image, |
|
outputs=output_image, |
|
fn=yolo, |
|
cache_examples=False) |
|
btn.click(yolo, inputs=[input_image, model_selection, toggles, radios], outputs=[ |
|
output_image, output_json, filtered_image, filtered_json]) |
|
|
|
demo.launch(debug=True) |
|
|