from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM from peft import PeftModel, PeftConfig import torch import gradio as gr import json import os import shutil import requests # Define the device device = "cuda" if torch.cuda.is_available() else "cpu" #Define variables temperature=0.4 max_new_tokens=240 top_p=0.92 repetition_penalty=1.7 max_length=2048 # Use model IDs as variables base_model_id = "tiiuae/falcon-7b-instruct" model_directory = "Tonic/GaiaMiniMed" # Instantiate the Tokenizer tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True, padding_side="left") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = 'left' # Load the GaiaMiniMed model with the specified configuration # Load the Peft model with a specific configuration # Specify the configuration class for the model model_config = AutoConfig.from_pretrained(base_model_id) # Load the PEFT model with the specified configuration peft_model = AutoModelForCausalLM.from_pretrained(model_directory, config=model_config) peft_model = PeftModel.from_pretrained(peft_model, model_directory) # Class to encapsulate the Falcon chatbot class FalconChatBot: def __init__(self, system_prompt="You are an expert medical analyst:"): self.system_prompt = system_prompt def process_history(self, history): if history is None: return [] # Ensure that history is a list of dictionaries if not isinstance(history, list): return [] # Filter out special commands from the history filtered_history = [] for message in history: if isinstance(message, dict): user_message = message.get("user", "") assistant_message = message.get("assistant", "") # Check if the user_message is not a special command if not user_message.startswith("Falcon:"): filtered_history.append({"user": user_message, "assistant": assistant_message}) return filtered_history def predict(self, user_message, assistant_message, history, temperature=0.4, max_new_tokens=700, top_p=0.99, repetition_penalty=1.9): # Process the history to remove special commands processed_history = self.process_history(history) # Combine the user and assistant messages into a conversation conversation = f"{self.system_prompt}\nFalcon: {assistant_message if assistant_message else ''} User: {user_message}\nFalcon:\n" # Encode the conversation using the tokenizer input_ids = tokenizer.encode(conversation, return_tensors="pt", add_special_tokens=False) # Generate a response using the Falcon model response = peft_model.generate(input_ids=input_ids, max_length=max_length, use_cache=False, early_stopping=False, bos_token_id=peft_model.config.bos_token_id, eos_token_id=peft_model.config.eos_token_id, pad_token_id=peft_model.config.eos_token_id, temperature=0.4, do_sample=True) # Decode the generated response to text response_text = tokenizer.decode(response[0], skip_special_tokens=True) # Append the Falcon-like conversation to the history self.history.append(conversation) self.history.append(response_text) return response_text # Create the Falcon chatbot instance falcon_bot = FalconChatBot() # Define the Gradio interface title = "👋🏻Welcome to Tonic's 🦅Falcon's Medical👨🏻‍⚕️Expert Chat🚀" description = "You can use this Space to test out the GaiaMiniMed model [(Tonic/GaiaMiniMed)](https://huggingface.co/Tonic/GaiaMiniMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)." # Comment out cached examples and history to avoid time out on build. # # history = [ # {"user": "hi there how can you help me?", "assistant": "Hello, my name is Gaia, i'm created by Tonic, i can answer questions about medicine and public health!"}, # # Add more user and assistant messages as needed # ] # examples = [ # [ # { # "user_message": "What is the proper treatment for buccal herpes?", # "assistant_message": "My name is Gaia, I'm a health and sanitation expert ready to answer your medical questions.", # "history": [], # "temperature": 0.4, # "max_new_tokens": 700, # "top_p": 0.90, # "repetition_penalty": 1.9, # } # ] # ] additional_inputs=[ gr.Textbox("", label="Optional system prompt"), gr.Slider( label="Temperature", value=0.9, minimum=0.0, maximum=1.0, step=0.05, interactive=True, info="Higher values produce more diverse outputs", ), gr.Slider( label="Max new tokens", value=256, minimum=0, maximum=3000, step=64, interactive=True, info="The maximum numbers of new tokens", ), gr.Slider( label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05, interactive=True, info="Higher values sample more low-probability tokens", ), gr.Slider( label="Repetition penalty", value=1.2, minimum=1.0, maximum=2.0, step=0.05, interactive=True, info="Penalize repeated tokens", ) ] iface = gr.Interface( fn=falcon_bot.predict, title=title, description=description, # examples=examples, inputs=[ gr.inputs.Textbox(label="Input Parameters", type="text", lines=5), ] + additional_inputs, outputs="text", theme="ParityError/Anime" ) # Launch the Gradio interface for the Falcon model iface.launch()