prtm's picture
Upload 7 files
bc19da9
# %%
from keras.layers import *
from keras.models import *
from tensorflow.keras.models import Model
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.preprocessing import image
import numpy as np
from tensorflow.keras.applications.resnet50 import preprocess_input
import pickle
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.utils import to_categorical
# %%
model=load_model('model_weights/model_19.h5')
# %%
model_temp=ResNet50(weights='imagenet',input_shape=(224,224,3))
# %%
model_resnet=Model(model_temp.input,model_temp.layers[-2].output)
# %%
def preprocess_img(img):
img=image.load_img(img,target_size=(224,224))
img=image.img_to_array(img)
img=np.expand_dims(img,axis=0)
img=preprocess_input(img)
return img
# %%
def encode_image(img):
img=preprocess_img(img)
feature_vector=model_resnet.predict(img)
feature_vector=feature_vector.reshape(1,feature_vector.shape[1])
# print(feature_vector.shape)
return feature_vector
# %%
with open('storage/word_to_idx.pkl','rb') as w2i:
word_to_idx=pickle.load(w2i)
with open('storage/idx_to_word.pkl','rb') as i2w:
idx_to_word=pickle.load(i2w)
# %%
def predict_caption(photo):
max_len=35
in_text = "startseq"
for i in range(max_len):
sequence = [word_to_idx[w] for w in in_text.split() if w in word_to_idx]
sequence = pad_sequences([sequence],maxlen=max_len,padding='post')
ypred = model.predict([photo,sequence])
ypred = ypred.argmax() #WOrd with max prob always - Greedy Sampling
word = idx_to_word[ypred]
in_text += (' ' + word)
if word == "endseq":
break
final_caption = in_text.split()[1:-1]
final_caption = ' '.join(final_caption)
return final_caption
# %%
def caption_this_image(image):
enc=encode_image(image)
caption=predict_caption(enc)
return caption