File size: 5,060 Bytes
daa90f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd2041
 
 
 
daa90f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dd2041
 
 
daa90f5
2dd2041
 
 
 
 
 
 
 
 
 
 
daa90f5
2dd2041
daa90f5
 
2dd2041
 
 
 
 
 
 
 
 
daa90f5
2dd2041
 
 
daa90f5
2dd2041
 
daa90f5
2dd2041
daa90f5
2dd2041
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
""" from https://github.com/keithito/tacotron """

"""
Cleaners are transformations that run over the input text at both training and eval time.

Cleaners can be selected by passing a comma-delimited list of cleaner names as the "cleaners"
hyperparameter. Some cleaners are English-specific. You'll typically want to use:
  1. "english_cleaners" for English text
  2. "transliteration_cleaners" for non-English text that can be transliterated to ASCII using
     the Unidecode library (https://pypi.python.org/pypi/Unidecode)
  3. "basic_cleaners" if you do not want to transliterate (in this case, you should also update
     the symbols in symbols.py to match your data).
"""

import re
from unidecode import unidecode
from phonemizer import phonemize
from phonemizer.backend import EspeakBackend

backend_cat = EspeakBackend("ca", preserve_punctuation=True, with_stress=True)
backend_bal = EspeakBackend("ca-ba", preserve_punctuation=True, with_stress=True)
backend_val = EspeakBackend("ca-va", preserve_punctuation=True, with_stress=True)
backend_occ = EspeakBackend("ca-nw", preserve_punctuation=True, with_stress=True)

# Regular expression matching whitespace:
_whitespace_re = re.compile(r"\s+")

# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = [
    (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
    for x in [
        ("mrs", "misess"),
        ("mr", "mister"),
        ("dr", "doctor"),
        ("st", "saint"),
        ("co", "company"),
        ("jr", "junior"),
        ("maj", "major"),
        ("gen", "general"),
        ("drs", "doctors"),
        ("rev", "reverend"),
        ("lt", "lieutenant"),
        ("hon", "honorable"),
        ("sgt", "sergeant"),
        ("capt", "captain"),
        ("esq", "esquire"),
        ("ltd", "limited"),
        ("col", "colonel"),
        ("ft", "fort"),
    ]
]


def expand_abbreviations(text):
    for regex, replacement in _abbreviations:
        text = re.sub(regex, replacement, text)
    return text


def expand_numbers(text):
    return normalize_numbers(text)


def lowercase(text):
    return text.lower()


def collapse_whitespace(text):
    return re.sub(_whitespace_re, " ", text)


def convert_to_ascii(text):
    return unidecode(text)


def basic_cleaners(text):
    """Basic pipeline that lowercases and collapses whitespace without transliteration."""
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def transliteration_cleaners(text):
    """Pipeline for non-English text that transliterates to ASCII."""
    text = convert_to_ascii(text)
    text = lowercase(text)
    text = collapse_whitespace(text)
    return text


def english_cleaners(text):
    """Pipeline for English text, including abbreviation expansion."""
    text = convert_to_ascii(text)
    text = lowercase(text)
    text = expand_abbreviations(text)
    phonemes = phonemize(text, language="en-us", backend="espeak", strip=True)
    phonemes = collapse_whitespace(phonemes)
    return phonemes


def english_cleaners2(text):
    """Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
    text = convert_to_ascii(text)
    text = lowercase(text)
    text = expand_abbreviations(text)
    phonemes = phonemize(
        text,
        language="en-us",
        backend="espeak",
        strip=True,
        preserve_punctuation=True,
        with_stress=True,
    )
    phonemes = collapse_whitespace(phonemes)
    return phonemes


def catalan_cleaners(text):
    """Pipeline for catalan text, including punctuation + stress"""
    #text = convert_to_ascii(text)
    text = lowercase(text)
    #text = expand_abbreviations(text)
    phonemes = backend_cat.phonemize([text], strip=True)[0]
    phonemes = collapse_whitespace(phonemes)
    return phonemes

def catalan_balear_cleaners(text):
    """Pipeline for Catalan text, including abbreviation expansion. + punctuation + stress"""
    # text = convert_to_ascii(text)
    text = lowercase(text)
    # text = expand_abbreviations(text)
    phonemes = backend_bal.phonemize([text], strip=True, njobs=1)[0]
    phonemes = collapse_whitespace(phonemes)
    # print(phonemes)  # check punctuations!!
    return phonemes

def catalan_occidental_cleaners(text):
    """Pipeline for Catalan text, including abbreviation expansion. + punctuation + stress"""
    # text = convert_to_ascii(text)
    text = lowercase(text)
    # text = expand_abbreviations(text)
    phonemes = backend_occ.phonemize([text], strip=True, njobs=1)[0]
    phonemes = collapse_whitespace(phonemes)
    # print(phonemes)  # check punctuations!!
    return phonemes

def catalan_valencia_cleaners(text):
    """Pipeline for Catalan text, including abbreviation expansion. + punctuation + stress"""
    # text = convert_to_ascii(text)
    text = lowercase(text)
    # text = expand_abbreviations(text)
    phonemes = backend_val.phonemize([text], strip=True, njobs=1)[0]
    phonemes = collapse_whitespace(phonemes)
    # print(phonemes)  # check punctuations!!
    return phonemes