pritamdeka's picture
Update app.py
f437197 verified
import nltk
import re
import nltkmodule
from newspaper import Article
from newspaper import fulltext
import requests
from nltk.tokenize import word_tokenize
from sentence_transformers import SentenceTransformer, models, losses, LoggingHandler
import pandas as pd
import numpy as np
from torch.utils.data import DataLoader
import math
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import *
from nltk.corpus import stopwords
stop_words = stopwords.words('english')
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
from nltk.tokenize import sent_tokenize
import scispacy
import en_core_sci_lg
import string
import gradio as gr
import inflect
inflect_op = inflect.engine()
nlp = en_core_sci_lg.load()
sp = en_core_sci_lg.load()
all_stopwords = sp.Defaults.stop_words
def remove_stopwords(sen):
sen_new = " ".join([i for i in sen if i not in stop_words])
return sen_new
def keyphrase_generator(article_link, model_1, model_2, max_num_keywords):
element=[]
final_textrank_list=[]
document=[]
text_doc=[]
score_list=[]
sum_list=[]
model_1 = SentenceTransformer(model_1)
model_2 = SentenceTransformer(model_2)
url = article_link
html = requests.get(url).text
article = fulltext(html)
corpus=sent_tokenize(article)
indicator_list=['concluded','concludes','in a study', 'concluding','conclude','in sum','in a recent study','therefore','thus','so','hence',
'as a result','accordingly','consequently','in short','proves that','shows that','suggests that','demonstrates that','found that','observed that',
'indicated that','suggested that','demonstrated that']
count_dict={}
for l in corpus:
c=0
for l2 in indicator_list:
if l.find(l2)!=-1: ### then it is a substring
c=1
break
if c:#
count_dict[l]=1
else:
count_dict[l]=0
for sent, score in count_dict.items():
score_list.append(score)
clean_sentences_new = pd.Series(corpus).str.replace("[^a-zA-Z]", " ", regex=True).tolist()
corpus_embeddings = model_1.encode(clean_sentences_new)
sim_mat = np.zeros([len(clean_sentences_new), len(clean_sentences_new)])
for i in range(len(clean_sentences_new)):
len_embeddings=(len(corpus_embeddings[i]))
for j in range(len(clean_sentences_new)):
if i != j:
if(len_embeddings == 1024):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,1024), corpus_embeddings[j].reshape(1,1024))[0,0]
elif(len_embeddings == 768):
sim_mat[i][j] = cosine_similarity(corpus_embeddings[i].reshape(1,768), corpus_embeddings[j].reshape(1,768))[0,0]
nx_graph = nx.from_numpy_array(sim_mat)
scores = nx.pagerank(nx_graph)
sentences=((scores[i],s) for i,s in enumerate(corpus))
for elem in sentences:
element.append(elem[0])
for sc, lst in zip(score_list, element): ########### taking the scores from both the lists
sum1=sc+lst
sum_list.append(sum1)
x=sorted(((sum_list[i],s) for i,s in enumerate(corpus)), reverse=True)
for elem in x:
final_textrank_list.append(elem[1])
a=int((10*len(final_textrank_list))/100.0)
if(a<5):
total=5
else:
total=int(a)
for i in range(total):
document.append(final_textrank_list[i])
doc=" ".join(document)
for i in document:
doc_1=nlp(i)
text_doc.append([X.text for X in doc_1.ents])
entity_list = [item for sublist in text_doc for item in sublist]
entity_list = [word for word in entity_list if not word in all_stopwords]
entity_list = [word_entity for word_entity in entity_list if(inflect_op.singular_noun(word_entity) == False)]
entity_list=list(dict.fromkeys(entity_list))
doc_embedding = model_2.encode([doc])
candidates=entity_list
candidate_embeddings = model_2.encode(candidates)
distances = cosine_similarity(doc_embedding, candidate_embeddings)
top_n = max_num_keywords
keyword_list = [candidates[index] for index in distances.argsort()[0][-top_n:]]
keywords = '\n'.join(keyword_list)
return keywords
igen=gr.Interface(keyphrase_generator,
inputs=[gr.components.Textbox(lines=1, placeholder="Provide an online health article web link here",value="", label="Article web link"),
gr.components.Dropdown(choices=['sentence-transformers/all-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/gtr-t5-large',
'pritamdeka/S-Bluebert-snli-multinli-stsb',
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/stsb-mpnet-base-v2',
'sentence-transformers/all-roberta-large-v1',
'sentence-transformers/stsb-roberta-base-v2',
'sentence-transformers/stsb-distilroberta-base-v2',
'sentence-transformers/sentence-t5-large',
'sentence-transformers/sentence-t5-base'],
type="value",
value='pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
label="Select any SBERT model for TextRank from the list below"),
gr.components.Dropdown(choices=['sentence-transformers/paraphrase-mpnet-base-v2',
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-distilroberta-base-v1',
'sentence-transformers/paraphrase-xlm-r-multilingual-v1',
'sentence-transformers/paraphrase-multilingual-mpnet-base-v2',
'sentence-transformers/paraphrase-albert-small-v2',
'sentence-transformers/paraphrase-albert-base-v2',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
'sentence-transformers/paraphrase-MiniLM-L6-v2',
'sentence-transformers/all-MiniLM-L12-v2',
'sentence-transformers/all-distilroberta-v1',
'sentence-transformers/paraphrase-TinyBERT-L6-v2',
'sentence-transformers/paraphrase-MiniLM-L3-v2',
'sentence-transformers/all-MiniLM-L6-v2'],
type="value",
value='sentence-transformers/all-mpnet-base-v1',
label="Select any SBERT model for keyphrases from the list below"),
gr.components.Slider(minimum=5, maximum=30, step=1, value=10, label="Max Keywords")],
outputs=gr.components.Textbox(type="text", label="Output", lines=10), theme="peach",
title="Health Article Keyphrase Generator",
description="Generates the keyphrases from an online health article which best describes the article. Examples are provided below for demo purposes. Choose any one example to see the results. ",
examples=[
["https://www.cancer.news/2021-12-22-mrna-vaccines-weaken-immune-system-cause-cancer.html",
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/paraphrase-MiniLM-L12-v2',
10],
["https://www.cancer.news/2022-02-04-doctors-testifying-covid-vaccines-causing-cancer-aids.html#",
'sentence-transformers/all-mpnet-base-v1',
'sentence-transformers/all-mpnet-base-v1',
12],
["https://www.medicalnewstoday.com/articles/alzheimers-addressing-sleep-disturbance-may-alleviate-symptoms",
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/all-mpnet-base-v1',
10],
["https://www.medicalnewstoday.com/articles/omicron-what-do-we-know-about-the-stealth-variant",
'pritamdeka/S-Biomed-Roberta-snli-multinli-stsb',
'sentence-transformers/all-mpnet-base-v1',
15]
],
article= "The work is based on a part of the paper provided <a href=https://dl.acm.org/doi/10.1145/3487664.3487701>here</a>."
"\t It uses the TextRank algorithm with <a href=https://www.sbert.net/>SBERT</a> to first find the top ranked sentences and then extracts the keyphrases"
"\t from those sentences using <a href = https://allenai.github.io/scispacy/>scispaCy</a> and SBERT."
"\t The list of SBERT models provided can be found in <a href=www.sbert.net/docs/pretrained_models.html>SBERT Pre-trained models hub</a>."
"\t The default model names are provided which can be changed from the list of models available. "
"\t The value of output keyphrases can be changed. The default value is 10, minimum is 5 and a maximum value of 30.")
igen.launch(share=False)
####