import gradio as gr from moviepy.editor import VideoFileClip from transformers import pipeline import os # Initialize the Whisper model whisper_model = pipeline("automatic-speech-recognition", model="openai/whisper-large") def convert_video_to_wav(video_path): # Extract audio from video using moviepy and save as WAV video_clip = VideoFileClip(video_path) audio = video_clip.audio wav_file = "temp_audio.wav" audio.write_audiofile(wav_file, codec='pcm_s16le') # Write as WAV format return wav_file def convert_audio_to_srt(wav_file): # Transcribe the audio using the Whisper model transcription = whisper_model(wav_file) # Save the transcription to an SRT file with simple formatting srt_file = "transcription.srt" with open(srt_file, "w", encoding="utf-8") as f: for i, segment in enumerate(transcription['text'].split('.')): f.write(f"{i+1}\n") # Subtitle index f.write(f"00:00:{i*2:02d},000 --> 00:00:{i*2+2:02d},000\n") # Timestamp (basic) f.write(f"{segment.strip()}\n\n") # Transcription text # Clean up temp audio file os.remove(wav_file) return srt_file def process_video(video): # Save the uploaded video file to a temporary location video_path = video.name # Process the video to extract audio and convert to srt wav_file = convert_video_to_wav(video_path) # Convert video to WAV srt_file = convert_audio_to_srt(wav_file) # Convert WAV to SRT return srt_file # Return the path of the generated SRT file # Gradio Interface interface = gr.Interface( fn=process_video, inputs=gr.File(label="Upload video file", file_types=['mp4', 'avi', 'mkv']), # Video file input outputs=gr.File(label="Download SRT File"), # Output the SRT file for download title="Video to SRT Subtitle Generator", description="Upload a video file (e.g., .mp4), and the app will generate a subtitle file (SRT format) using Whisper model." ) interface.launch()