pratikshahp's picture
Create app.py
489d8c3 verified
import gradio as gr
from moviepy.editor import VideoFileClip
from transformers import pipeline
import os
# Initialize the Whisper model
whisper_model = pipeline("automatic-speech-recognition", model="openai/whisper-large")
def convert_video_to_wav(video_path):
# Extract audio from video using moviepy and save as WAV
video_clip = VideoFileClip(video_path)
audio = video_clip.audio
wav_file = "temp_audio.wav"
audio.write_audiofile(wav_file, codec='pcm_s16le') # Write as WAV format
return wav_file
def convert_audio_to_srt(wav_file):
# Transcribe the audio using the Whisper model
transcription = whisper_model(wav_file)
# Save the transcription to an SRT file with simple formatting
srt_file = "transcription.srt"
with open(srt_file, "w", encoding="utf-8") as f:
for i, segment in enumerate(transcription['text'].split('.')):
f.write(f"{i+1}\n") # Subtitle index
f.write(f"00:00:{i*2:02d},000 --> 00:00:{i*2+2:02d},000\n") # Timestamp (basic)
f.write(f"{segment.strip()}\n\n") # Transcription text
# Clean up temp audio file
os.remove(wav_file)
return srt_file
def process_video(video):
# Save the uploaded video file to a temporary location
video_path = video.name
# Process the video to extract audio and convert to srt
wav_file = convert_video_to_wav(video_path) # Convert video to WAV
srt_file = convert_audio_to_srt(wav_file) # Convert WAV to SRT
return srt_file # Return the path of the generated SRT file
# Gradio Interface
interface = gr.Interface(
fn=process_video,
inputs=gr.File(label="Upload video file", file_types=['mp4', 'avi', 'mkv']), # Video file input
outputs=gr.File(label="Download SRT File"), # Output the SRT file for download
title="Video to SRT Subtitle Generator",
description="Upload a video file (e.g., .mp4), and the app will generate a subtitle file (SRT format) using Whisper model."
)
interface.launch()