Spaces:
Running
on
Zero
Running
on
Zero
import requests | |
from collections import Counter | |
from requests.adapters import HTTPAdapter, Retry | |
import os | |
import time | |
import logging | |
import gradio as gr | |
import pandas as pd | |
import polars as pl | |
import matplotlib.pyplot as plt | |
import spaces | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
from huggingface_hub import PyTorchModelHubMixin | |
import torch | |
from torch import nn | |
from transformers import AutoModel, AutoTokenizer, AutoConfig | |
from tqdm import tqdm | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") | |
session = requests.Session() | |
retries = Retry(total=5, backoff_factor=2, status_forcelist=[502, 503, 504]) | |
session.mount('http://', HTTPAdapter(max_retries=retries)) | |
class QualityModel(nn.Module, PyTorchModelHubMixin): | |
def __init__(self, config): | |
super(QualityModel, self).__init__() | |
self.model = AutoModel.from_pretrained(config["base_model"]) | |
self.dropout = nn.Dropout(config["fc_dropout"]) | |
self.fc = nn.Linear(self.model.config.hidden_size, len(config["id2label"])) | |
def forward(self, input_ids, attention_mask): | |
features = self.model( | |
input_ids=input_ids, attention_mask=attention_mask | |
).last_hidden_state | |
dropped = self.dropout(features) | |
outputs = self.fc(dropped) | |
return torch.softmax(outputs[:, 0, :], dim=1) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
config = AutoConfig.from_pretrained("nvidia/quality-classifier-deberta") | |
tokenizer = AutoTokenizer.from_pretrained("nvidia/quality-classifier-deberta") | |
model = QualityModel.from_pretrained("nvidia/quality-classifier-deberta").to(device) | |
# model = torch.compile(model) | |
model.eval() | |
def predict(texts: list[str]): | |
inputs = tokenizer( | |
texts, return_tensors="pt", padding="longest", truncation=True | |
).to(device) | |
outputs = model(inputs["input_ids"], inputs["attention_mask"]) | |
predicted_classes = torch.argmax(outputs, dim=1) | |
predicted_domains = [ | |
config.id2label[class_idx.item()] for class_idx in predicted_classes.cpu().numpy() | |
] | |
return predicted_domains | |
def plot_and_df(texts, preds): | |
texts_df = pd.DataFrame({"quality": preds, "text": texts}) | |
counts = Counter(preds) | |
counts_df = pd.DataFrame( | |
{ | |
"quality": ["Low", "Medium", "High"], | |
"count": [counts.get("Low", 0), counts.get("Medium", 0), counts.get("High", 0)] | |
} | |
) | |
# counts.reset_index(inplace=True) | |
return ( | |
gr.BarPlot(counts_df, x="quality", y="count", sort=None), | |
texts_df[texts_df["quality"] == "Low"][["text"]][:min(texts_df.shape[0], 20)], | |
texts_df[texts_df["quality"] == "Medium"][["text"]][:min(texts_df.shape[0], 20)], | |
texts_df[texts_df["quality"] == "High"][["text"]][:min(texts_df.shape[0], 20)], | |
) | |
def get_first_parquet_filename(dataset, config, split): | |
parquet_resp = session.get(f"https://datasets-server.huggingface.co/parquet?dataset={dataset}&config={config}", timeout=20).json() | |
if "error" in parquet_resp: | |
raise ValueError(parquet_resp["error"]) | |
first_parquet_file_url = [file for file in parquet_resp["parquet_files"] if file["split"] == split][0]["url"] | |
return "/".join(first_parquet_file_url.split("/")[-3:]) | |
def run_quality_check(dataset, config, split, column, nested_column, batch_size, num_examples): | |
logging.info(f"Fetching data for {dataset=} {config=} {split=} {column=}") | |
try: | |
filename = get_first_parquet_filename(dataset, config, split) | |
except Exception as error: | |
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
return | |
try: | |
logging.info(f"Loading hf://datasets/{dataset}@~parquet/{filename}") | |
yield f"loading data...", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
data = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{filename}", columns=[column]) | |
except Exception as error: | |
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
return | |
logging.info("Data fetched.") | |
data_sample = data.sample(num_examples, seed=16) if data.shape[0] > num_examples else data | |
texts = data_sample[column].to_list() | |
if nested_column: | |
texts = [text[nested_column] for text in texts] | |
predictions, texts_processed = [], [] | |
num_examples = min(len(texts), num_examples) | |
for i in range(0, num_examples, batch_size): | |
batch_texts = texts[i:i+batch_size] | |
try: | |
batch_predictions = predict(batch_texts) | |
except Exception as error: | |
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
return | |
predictions.extend(batch_predictions) | |
texts_processed.extend(batch_texts) | |
yield {"quality check in progress...": i / num_examples}, *plot_and_df(texts_processed, predictions), pd.DataFrame() | |
yield {"quality check finished": 1.}, *plot_and_df(texts_processed, predictions), data_sample | |
PERSPECTIVE_API_KEY = os.environ.get("PERSPECTIVE_API_KEY") | |
PERSPECTIVE_URL = f"https://commentanalyzer.googleapis.com/v1alpha1/comments:analyze?key={PERSPECTIVE_API_KEY}" | |
REQUESTED_ATTRIBUTES = {"TOXICITY": {}, "SEVERE_TOXICITY": {}, | |
"IDENTITY_ATTACK": {}, "INSULT": {}, "PROFANITY": {}, | |
"THREAT": {}} | |
ATT_SCORE = "attributeScores" | |
SUM_SCORE = "summaryScore" | |
def plot_toxicity(scores): | |
fig, axs = plt.subplots(2, 3)#, figsize=(10, 6)) | |
for x, y, score_name in zip([0,0,0,1,1,1], [0,1,2,0,1,2], scores): | |
axs[x,y].hist(scores[score_name], bins=20, range=(0., 1.)) | |
axs[x,y].set_xlabel(score_name) | |
fig.supylabel("Number of texts") | |
fig.suptitle("Histogram of toxicity scores") | |
fig.tight_layout() | |
return fig | |
def call_perspective_api(texts_df, column_name, nested_column_name, dataset, config, split):#, full_check=False): | |
headers = { | |
"content-type": "application/json", | |
} | |
req_att_scores = {**{attr: [] for attr in REQUESTED_ATTRIBUTES}} | |
texts_processed = {column_name: []} | |
# fetch data if it doesn't exist yet | |
if texts_df.values.tolist() == [['', '', '']]: | |
logging.info(f"Fetching data for {dataset=} {config=} {split=} {column_name=}") | |
try: | |
filename = get_first_parquet_filename(dataset, config, split) | |
except Exception as error: | |
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
return | |
try: | |
logging.info(f"Loading hf://datasets/{dataset}@~parquet/{filename}") | |
yield f"loading data...", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
texts_df = pl.read_parquet(f"hf://datasets/{dataset}@~parquet/{filename}", columns=[column_name]) | |
except Exception as error: | |
yield f"β {error}", gr.BarPlot(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame() | |
return | |
logging.info("Data fetched.") | |
texts_df = texts_df.to_pandas() | |
texts = texts_df.sample(100, random_state=16)[column_name].values if texts_df.shape[0] > 100 else texts_df[column_name].values | |
if nested_column_name: | |
texts = [text[nested_column_name] for text in texts] | |
n_samples = len(texts) | |
for i, text in tqdm(enumerate(texts), desc="scanning with perspective"): | |
data = { | |
"comment": {"text": text}, | |
"languages": ["en"], | |
"requestedAttributes": REQUESTED_ATTRIBUTES | |
} | |
time.sleep(1) | |
try: | |
req_response = session.post(PERSPECTIVE_URL, json=data, headers=headers) | |
except Exception as e: | |
logging.info(e) | |
logging.info(data) | |
# yield {"bad request, example skipped...": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores}) | |
continue | |
if req_response.ok: | |
response = req_response.json() | |
if ATT_SCORE in response: | |
texts_processed[column_name].append(text) | |
for req_att in REQUESTED_ATTRIBUTES: | |
if req_att in response[ATT_SCORE]: | |
att_score = response[ATT_SCORE][req_att][SUM_SCORE]["value"] | |
req_att_scores[req_att].append(att_score) | |
else: | |
req_att_scores[req_att].append(0) | |
else: | |
raise ValueError(req_response) | |
else: | |
try: | |
req_response.raise_for_status() | |
except Exception as e: | |
logging.info(e) | |
logging.info(data) | |
# yield {"bad request, example skipped": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores}) | |
continue | |
if i % 10 == 0: | |
plot_toxicity(req_att_scores) | |
yield {"toxicity check in progress...": i / n_samples}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores}) | |
plot_toxicity(req_att_scores) | |
yield {"toxicity check finished.": 1.}, plt.gcf(), pd.DataFrame.from_dict({**texts_processed, **req_att_scores}) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# π Text Data Quality Checker π | |
This space gives some instruments to have a quick glance at the quality of an English text dataset. | |
* It uses [NVIDIA's quality classifier model](https://huggingface.co/nvidia/quality-classifier-deberta) | |
on a small subset of texts. | |
* It uses [Perspective](https://perspectiveapi.com/how-it-works/) API to check toxicity of 100 random dataset texts | |
## Select dataset and text column | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
dataset_name = HuggingfaceHubSearch( | |
label="Hub Dataset ID", | |
placeholder="Search for dataset id on Huggingface", | |
search_type="dataset", | |
) | |
subset_dropdown = gr.Dropdown(label="Subset", visible=False) | |
split_dropdown = gr.Dropdown(label="Split", visible=False) | |
with gr.Accordion("Dataset preview", open=False): | |
def embed(name, subset, split): | |
html_code = f""" | |
<iframe | |
src="https://huggingface.co/datasets/{name}/embed/viewer/{subset}/{split}" | |
frameborder="0" | |
width="100%" | |
height="600px" | |
></iframe> | |
""" | |
return gr.HTML(value=html_code) | |
with gr.Row(): | |
text_column_dropdown = gr.Dropdown(label="Text column name") | |
nested_text_column_dropdown = gr.Dropdown(label="Nested text column name", visible=False) | |
def _resolve_dataset_selection(dataset: str, default_subset: str, default_split: str, text_feature): | |
if "/" not in dataset.strip().strip("/"): | |
return { | |
subset_dropdown: gr.Dropdown(visible=False), | |
split_dropdown: gr.Dropdown(visible=False), | |
text_column_dropdown: gr.Dropdown(label="Text column name"), | |
nested_text_column_dropdown: gr.Dropdown(visible=False) | |
} | |
info_resp = session.get(f"https://datasets-server.huggingface.co/info?dataset={dataset}", timeout=20).json() | |
if "error" in info_resp: | |
return { | |
subset_dropdown: gr.Dropdown(visible=False), | |
split_dropdown: gr.Dropdown(visible=False), | |
text_column_dropdown: gr.Dropdown(label="Text column name"), | |
nested_text_column_dropdown: gr.Dropdown(visible=False) | |
} | |
subsets: list[str] = list(info_resp["dataset_info"]) | |
subset = default_subset if default_subset in subsets else subsets[0] | |
splits: list[str] = list(info_resp["dataset_info"][subset]["splits"]) | |
split = default_split if default_split in splits else splits[0] | |
features = info_resp["dataset_info"][subset]["features"] | |
def _is_string_feature(feature): | |
return isinstance(feature, dict) and feature.get("dtype") == "string" | |
text_features = [feature_name for feature_name, feature in features.items() if _is_string_feature(feature)] | |
nested_features = [feature_name for feature_name, feature in features.items() if isinstance(feature, dict) and isinstance(next(iter(feature.values())), dict)] | |
nested_text_features = [feature_name for feature_name in nested_features if any(_is_string_feature(nested_feature) for nested_feature in features[feature_name].values())] | |
if not text_feature: | |
return { | |
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1), | |
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1), | |
text_column_dropdown: gr.Dropdown(choices=text_features + nested_text_features, label="Text column name"), | |
nested_text_column_dropdown: gr.Dropdown(visible=False), | |
} | |
if text_feature in nested_text_features: | |
nested_keys = [feature_name for feature_name, feature in features[text_feature].items() if _is_string_feature(feature)] | |
return { | |
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1), | |
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1), | |
text_column_dropdown: gr.Dropdown(choices=text_features + nested_text_features, | |
label="Text column name"), | |
nested_text_column_dropdown: gr.Dropdown(value=nested_keys[0], choices=nested_keys, | |
label="Nested text column name", visible=True) | |
} | |
return { | |
subset_dropdown: gr.Dropdown(value=subset, choices=subsets, visible=len(subsets) > 1), | |
split_dropdown: gr.Dropdown(value=split, choices=splits, visible=len(splits) > 1), | |
text_column_dropdown: gr.Dropdown(choices=text_features + nested_text_features, label="Text column name"), | |
nested_text_column_dropdown: gr.Dropdown(visible=False), | |
} | |
def show_input_from_subset_dropdown(dataset: str) -> dict: | |
return _resolve_dataset_selection(dataset, default_subset="default", default_split="train", text_feature=None) | |
def show_input_from_subset_dropdown(dataset: str, subset: str) -> dict: | |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split="train", text_feature=None) | |
def show_input_from_split_dropdown(dataset: str, subset: str, split: str) -> dict: | |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split, text_feature=None) | |
def show_input_from_text_column_dropdown(dataset: str, subset: str, split: str, text_column) -> dict: | |
return _resolve_dataset_selection(dataset, default_subset=subset, default_split=split, text_feature=text_column) | |
gr.Markdown("## Run nvidia quality classifier") | |
batch_size = gr.Slider(0, 64, 32, step=4, label="Inference batch size", info="(set this to smaller value if this space crashes.)") | |
num_examples = gr.Slider(0, 5000, 500, step=10, label="Number of examples", info="Number of random examples to run quality classifier on") | |
gr_check_btn = gr.Button("Check Quality") | |
progress_bar = gr.Label(show_label=False) | |
plot = gr.BarPlot() | |
with gr.Accordion("Explore some individual examples for each class", open=False): | |
gr.Markdown("### Low") | |
df_low = gr.DataFrame() | |
gr.Markdown("### Medium") | |
df_medium = gr.DataFrame() | |
gr.Markdown("### High") | |
df_high = gr.DataFrame() | |
texts_df = gr.DataFrame(visible=False) | |
gr.Examples( | |
[ | |
["HuggingFaceFW/fineweb-edu", "default", "train", "text", None, 16, 500], | |
# ["fka/awesome-chatgpt-prompts", "default", "train", "prompt", 64, 200], | |
# ["proj-persona/PersonaHub", "instruction", "train", "synthesized text", 32, 1000], | |
["argilla/FinePersonas-v0.1", "default", "train", "persona", None, 64, 5000], | |
["allenai/real-toxicity-prompts", "default", "train", "continuation", "text", 64, 5000], | |
], | |
[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, batch_size, num_examples], | |
[progress_bar, plot, df_low, df_medium, df_high, texts_df], | |
fn=run_quality_check, | |
run_on_click=False, | |
cache_examples=False, | |
) | |
gr_check_btn.click( | |
run_quality_check, | |
inputs=[dataset_name, subset_dropdown, split_dropdown, text_column_dropdown, nested_text_column_dropdown, batch_size, num_examples], | |
outputs=[progress_bar, plot, df_low, df_medium, df_high, texts_df] | |
) | |
gr.Markdown("""## Explore toxicity | |
Run [Perspective](https://perspectiveapi.com/how-it-works/) on 100 random samples to check toxicity | |
""") | |
gr_toxicity_btn = gr.Button("Check Toxicity") | |
toxicity_progress_bar = gr.Label(show_label=False) | |
toxicity_hist = gr.Plot() | |
with gr.Accordion("Explore examples with toxicity scores:", open=False): | |
toxicity_df = gr.DataFrame() | |
gr_toxicity_btn.click( | |
call_perspective_api, | |
inputs=[texts_df, text_column_dropdown, nested_text_column_dropdown, dataset_name, subset_dropdown, split_dropdown],#, checkbox], | |
outputs=[toxicity_progress_bar, toxicity_hist, toxicity_df] | |
) | |
demo.launch() |