|
|
|
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
|
|
|
|
import time
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import yaml
|
|
from ml_collections import ConfigDict
|
|
from omegaconf import OmegaConf
|
|
|
|
|
|
def get_model_from_config(model_type, config_path):
|
|
with open(config_path) as f:
|
|
if model_type == 'htdemucs':
|
|
config = OmegaConf.load(config_path)
|
|
else:
|
|
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
|
|
|
|
if model_type == 'mdx23c':
|
|
from models.mdx23c_tfc_tdf_v3 import TFC_TDF_net
|
|
model = TFC_TDF_net(config)
|
|
elif model_type == 'htdemucs':
|
|
from models.demucs4ht import get_model
|
|
model = get_model(config)
|
|
elif model_type == 'segm_models':
|
|
from models.segm_models import Segm_Models_Net
|
|
model = Segm_Models_Net(config)
|
|
elif model_type == 'torchseg':
|
|
from models.torchseg_models import Torchseg_Net
|
|
model = Torchseg_Net(config)
|
|
elif model_type == 'mel_band_roformer':
|
|
from models.bs_roformer import MelBandRoformer
|
|
model = MelBandRoformer(
|
|
**dict(config.model)
|
|
)
|
|
elif model_type == 'bs_roformer':
|
|
from models.bs_roformer import BSRoformer
|
|
model = BSRoformer(
|
|
**dict(config.model)
|
|
)
|
|
elif model_type == 'swin_upernet':
|
|
from models.upernet_swin_transformers import Swin_UperNet_Model
|
|
model = Swin_UperNet_Model(config)
|
|
elif model_type == 'bandit':
|
|
from models.bandit.core.model import MultiMaskMultiSourceBandSplitRNNSimple
|
|
model = MultiMaskMultiSourceBandSplitRNNSimple(
|
|
**config.model
|
|
)
|
|
elif model_type == 'scnet_unofficial':
|
|
from models.scnet_unofficial import SCNet
|
|
model = SCNet(
|
|
**config.model
|
|
)
|
|
elif model_type == 'scnet':
|
|
from models.scnet import SCNet
|
|
model = SCNet(
|
|
**config.model
|
|
)
|
|
else:
|
|
print('Unknown model: {}'.format(model_type))
|
|
model = None
|
|
|
|
return model, config
|
|
|
|
|
|
def demix_track(config, model, mix, device):
|
|
C = config.audio.chunk_size
|
|
N = config.inference.num_overlap
|
|
fade_size = C // 10
|
|
step = int(C // N)
|
|
border = C - step
|
|
batch_size = config.inference.batch_size
|
|
|
|
length_init = mix.shape[-1]
|
|
|
|
|
|
if length_init > 2 * border and (border > 0):
|
|
mix = nn.functional.pad(mix, (border, border), mode='reflect')
|
|
|
|
|
|
window_size = C
|
|
fadein = torch.linspace(0, 1, fade_size)
|
|
fadeout = torch.linspace(1, 0, fade_size)
|
|
window_start = torch.ones(window_size)
|
|
window_middle = torch.ones(window_size)
|
|
window_finish = torch.ones(window_size)
|
|
window_start[-fade_size:] *= fadeout
|
|
window_finish[:fade_size] *= fadein
|
|
window_middle[-fade_size:] *= fadeout
|
|
window_middle[:fade_size] *= fadein
|
|
|
|
with torch.cuda.amp.autocast():
|
|
with torch.inference_mode():
|
|
if config.training.target_instrument is not None:
|
|
req_shape = (1, ) + tuple(mix.shape)
|
|
else:
|
|
req_shape = (len(config.training.instruments),) + tuple(mix.shape)
|
|
|
|
result = torch.zeros(req_shape, dtype=torch.float32)
|
|
counter = torch.zeros(req_shape, dtype=torch.float32)
|
|
i = 0
|
|
batch_data = []
|
|
batch_locations = []
|
|
while i < mix.shape[1]:
|
|
|
|
part = mix[:, i:i + C].to(device)
|
|
length = part.shape[-1]
|
|
if length < C:
|
|
if length > C // 2 + 1:
|
|
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
|
|
else:
|
|
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
|
batch_data.append(part)
|
|
batch_locations.append((i, length))
|
|
i += step
|
|
|
|
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
|
|
arr = torch.stack(batch_data, dim=0)
|
|
x = model(arr)
|
|
|
|
window = window_middle
|
|
if i - step == 0:
|
|
window = window_start
|
|
elif i >= mix.shape[1]:
|
|
window = window_finish
|
|
|
|
for j in range(len(batch_locations)):
|
|
start, l = batch_locations[j]
|
|
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
|
|
counter[..., start:start+l] += window[..., :l]
|
|
|
|
batch_data = []
|
|
batch_locations = []
|
|
|
|
estimated_sources = result / counter
|
|
estimated_sources = estimated_sources.cpu().numpy()
|
|
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
|
|
|
|
if length_init > 2 * border and (border > 0):
|
|
|
|
estimated_sources = estimated_sources[..., border:-border]
|
|
|
|
if config.training.target_instrument is None:
|
|
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
|
|
else:
|
|
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)}
|
|
|
|
|
|
def demix_track_demucs(config, model, mix, device):
|
|
S = len(config.training.instruments)
|
|
C = config.training.samplerate * config.training.segment
|
|
N = config.inference.num_overlap
|
|
batch_size = config.inference.batch_size
|
|
step = C // N
|
|
|
|
|
|
with torch.cuda.amp.autocast(enabled=config.training.use_amp):
|
|
with torch.inference_mode():
|
|
req_shape = (S, ) + tuple(mix.shape)
|
|
result = torch.zeros(req_shape, dtype=torch.float32)
|
|
counter = torch.zeros(req_shape, dtype=torch.float32)
|
|
i = 0
|
|
batch_data = []
|
|
batch_locations = []
|
|
while i < mix.shape[1]:
|
|
|
|
part = mix[:, i:i + C].to(device)
|
|
length = part.shape[-1]
|
|
if length < C:
|
|
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
|
|
batch_data.append(part)
|
|
batch_locations.append((i, length))
|
|
i += step
|
|
|
|
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
|
|
arr = torch.stack(batch_data, dim=0)
|
|
x = model(arr)
|
|
for j in range(len(batch_locations)):
|
|
start, l = batch_locations[j]
|
|
result[..., start:start+l] += x[j][..., :l].cpu()
|
|
counter[..., start:start+l] += 1.
|
|
batch_data = []
|
|
batch_locations = []
|
|
|
|
estimated_sources = result / counter
|
|
estimated_sources = estimated_sources.cpu().numpy()
|
|
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
|
|
|
|
if S > 1:
|
|
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
|
|
else:
|
|
return estimated_sources
|
|
|
|
|
|
def sdr(references, estimates):
|
|
|
|
delta = 1e-7
|
|
num = np.sum(np.square(references), axis=(1, 2))
|
|
den = np.sum(np.square(references - estimates), axis=(1, 2))
|
|
num += delta
|
|
den += delta
|
|
return 10 * np.log10(num / den)
|
|
|