sasha HF staff commited on
Commit
42e8f64
β€’
1 Parent(s): 7022131
Files changed (2) hide show
  1. app.py +12 -24
  2. data/text_classification.csv +14 -0
app.py CHANGED
@@ -1,27 +1,17 @@
1
  import gradio as gr
2
  import pandas as pd
3
  from huggingface_hub import list_models
4
-
5
-
6
- def get_submissions(category):
7
- submissions = list_models(filter=["dreambooth-hackathon", category], full=True)
8
- leaderboard_models = []
9
-
10
- for submission in submissions:
11
- # user, model, likes
12
- user_id = submission.id.split("/")[0]
13
- leaderboard_models.append(
14
- (
15
- make_clickable_user(user_id),
16
- make_clickable_model(submission.id),
17
- submission.likes,
18
- )
19
- )
20
-
21
- df = pd.DataFrame(data=leaderboard_models, columns=["User", "Model", "Likes"])
22
- df.sort_values(by=["Likes"], ascending=False, inplace=True)
23
- df.insert(0, "Rank", list(range(1, len(df) + 1)))
24
- return df
25
 
26
  # %% app.ipynb 3
27
  demo = gr.Blocks()
@@ -45,9 +35,7 @@ with demo:
45
  )
46
  with gr.TabItem("Text Classification 🎭"):
47
  with gr.Row():
48
- food_data = gr.components.Dataframe(
49
- type="pandas", datatype=["number", "markdown", "markdown", "number"]
50
- )
51
  with gr.TabItem("Image Classification πŸ–ΌοΈ"):
52
  with gr.Row():
53
  landscape_data = gr.components.Dataframe(
 
1
  import gradio as gr
2
  import pandas as pd
3
  from huggingface_hub import list_models
4
+ import plotly.express as px
5
+
6
+ def get_plots(task_df):
7
+ grouped_df = task_df[['total_gpu_energy', 'model']].groupby('model').mean().sort_values('total_gpu_energy',ascending = False)
8
+ grouped_df = grouped_df.reset_index()
9
+ grouped_df['model'] = grouped_df['model'].str.split('/').str[-1]
10
+ grouped_df['task'] = 'text_classification'
11
+ grouped_df['total_gpu_energy (Wh)'] = grouped_df['total_gpu_energy']*1000
12
+ grouped_df['energy_star'] = pd.cut(grouped_df['total_gpu_energy (Wh)'], 3, labels=["⭐⭐⭐", "⭐⭐", "⭐"])
13
+ grouped_df = px.scatter(grouped_df, x="model", y="total_gpu_energy (Wh)", height= 500, width= 800, color = 'energy_star', color_discrete_map={"⭐": 'red', "⭐⭐": "yellow", "⭐⭐⭐": "green"})
14
+ return grouped_df
 
 
 
 
 
 
 
 
 
 
15
 
16
  # %% app.ipynb 3
17
  demo = gr.Blocks()
 
35
  )
36
  with gr.TabItem("Text Classification 🎭"):
37
  with gr.Row():
38
+ plot = gr.Plot(get_plots('data/text_classification.csv'))
 
 
39
  with gr.TabItem("Image Classification πŸ–ΌοΈ"):
40
  with gr.Row():
41
  landscape_data = gr.components.Dataframe(
data/text_classification.csv ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,timestamp,task,model,dataset,total_gpu_energy
2
+ 0,2024-09-04-20-43-25,text_classification,nlptown/bert-base-multilingual-uncased-sentiment,EnergyStarAI/text_classification,0.0003565813408208385
3
+ 0,2024-09-04-20-53-52,text_classification,bhadresh-savani/electra-base-emotion,EnergyStarAI/text_classification,0.0002521368683758851
4
+ 0,2024-09-04-20-46-36,text_classification,distilbert/distilbert-base-uncased-finetuned-sst-2-english,EnergyStarAI/text_classification,0.00021773597974501514
5
+ 0,2024-09-04-20-51-02,text_classification,michelecafagna26/gpt2-medium-finetuned-sst2-sentiment,EnergyStarAI/text_classification,0.0008015121412091375
6
+ 0,2024-09-04-20-49-06,text_classification,lxyuan/distilbert-base-multilingual-cased-sentiments-student,EnergyStarAI/text_classification,0.00022141689935395448
7
+ 0,2024-09-04-20-48-33,text_classification,mnoukhov/gpt2-imdb-sentiment-classifier,EnergyStarAI/text_classification,0.00031876844945895045
8
+ 0,2024-09-04-20-28-47,text_classification,lvwerra/distilbert-imdb,EnergyStarAI/text_classification,0.00021602192281751088
9
+ 0,2024-09-04-20-44-33,text_classification,Cheng98/bert-large-sst2,EnergyStarAI/text_classification,0.0009180142621886489
10
+ 0,2024-09-04-22-01-22,text_classification_t5,google-t5/t5-large,EnergyStarAI/text_classification,0.00791976258580498
11
+ 0,2024-09-04-22-09-36,text_classification_t5,google-t5/t5-11b,EnergyStarAI/text_classification,0.027787078868534286
12
+ 0,2024-09-04-22-01-30,text_classification_t5,google-t5/t5-3b,EnergyStarAI/text_classification,0.011680515899960752
13
+ 0,2024-09-04-21-35-23,text_classification_t5,google-t5/t5-base,EnergyStarAI/text_classification,0.004126364467755295
14
+ 0,2024-09-04-22-01-48,text_classification_t5,google-t5/t5-small,EnergyStarAI/text_classification,0.0022160669117411657