from io import BytesIO from urllib.request import urlopen import librosa from transformers import Qwen2AudioForConditionalGeneration, AutoProcessor, pipeline import pyttsx3 # For text-to-speech # Load Qwen2Audio model and processor processor = AutoProcessor.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct") model = Qwen2AudioForConditionalGeneration.from_pretrained("Qwen/Qwen2-Audio-7B-Instruct", device_map="auto") # Initialize TTS engine tts_engine = pyttsx3.init() # Sample conversation with audio input conversation = [ {"role": "user", "content": [ {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/guess_age_gender.wav"}, ]}, {"role": "assistant", "content": "Yes, the speaker is female and in her twenties."}, {"role": "user", "content": [ {"type": "audio", "audio_url": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-Audio/audio/translate_to_chinese.wav"}, ]}, ] # Preprocess conversation text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False) audios = [] for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ele["type"] == "audio": audios.append(librosa.load( BytesIO(urlopen(ele['audio_url']).read()), sr=processor.feature_extractor.sampling_rate)[0] ) # Prepare model inputs inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True) inputs.input_ids = inputs.input_ids.to("cuda") # Generate response generate_ids = model.generate(**inputs, max_length=256) generate_ids = generate_ids[:, inputs.input_ids.size(1):] # Decode response response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] print("Model Response:", response) # Convert response to speech tts_engine.say(response) tts_engine.runAndWait()